Yolandi Ernst

and 30 more

As part of the REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project, we developed a comprehensive African Greenhouse gases (GHG) budget for the period 2010-2019 and compared it to the budget over the 1985-2009 (RECCAP1) period. We considered bottom-up process-based models, data-driven remotely sensed products, and national GHG inventories in comparison with top-down atmospheric inversions, accounting also for lateral fluxes. We incorporated emission estimates derived from novel methodologies for termites, herbivores, and fire, which are particularly important in Africa. We further constrained global woody biomass change products with high-quality regional observations. During the RECCAP2 period, Africa’s carbon sink capacity is decreasing, with net ecosystem exchange switching from a small sink of −0.61 ± 0.58 PgCyr−1 in RECCAP1 to a small source in RECCAP2 at 0.162 (-1.793/2.633) PgCyr-1. Net CO2 emissions estimated from bottom-up approaches were 1.588 (-6.461/11.439) PgCO2yr-1, net CH4 were 78.453 (36.665/59.677) TgCH4yr-1) and net N2O were 1.81 (1.716/2.239) TgN2Oyr-1. Top-down atmospheric inversions showed similar trends. LUC emissions increased, representing one of the largest contributions at 1.746 (0.841/2.651) PgCO2eq yr-1 to the African GHG budget and almost similar to emissions from fossil fuels at 1.743 (1.531/1.956) PgCO2eq yr-1, which also increased from RECCAP1. Additionally, wildfire emissions decreased, while fuelwood burning increased. For most component fluxes, uncertainty is large, highlighting the need for increased efforts to address Africa-specific data gaps. However, for RECCAP2, we improved our overall understanding of many of the important components of the African GHG budget that will assist to inform climate policy and action.

Benjamin Gaubert

and 29 more

Tropical lands play an important role in the global carbon cycle yet their contribution remains uncertain owing to sparse observations. Satellite observations of atmospheric carbon dioxide (CO2) have greatly increased spatial coverage over tropical regions, providing the potential for improved estimates of terrestrial fluxes. Despite this advancement, the spread among satellite-based and in-situ atmospheric CO2 flux inversions over northern tropical Africa (NTA), spanning 0-24◦N, remains large. Satellite-based estimates of an annual source of 0.8-1.45 PgC yr−1 challenge our understanding of tropical and global carbon cycling. Here, we compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic Ocean by the NASA Atmospheric Tomography (ATom) mission during four seasons. We develop emergent constraints on tropical African CO2 fluxes using flux-concentration relationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr−1 (mean and standard deviation) for NTA, 2016-2018. The satellite-based flux bias suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux estimates relative to the in situ observing network at other times of year, indicating stronger uptake in NTA during the wet season than the in-situ inversion estimates.

Kevin Raeder

and 9 more

Society’s ability to make wise decisions depends onan accurate understanding of the current state of Earthand on an ability to predict future states.The Data Assimilation Research Testbed (DART) is an example of a suite of toolsdesigned to improve our understanding through the combination of observationswith our theoretical understanding embodied in forecast models.DART’s ensemble based data assimilation provides uncertainty quantification as a function of time, location, and variable.Current research using DART includes: Improving streamflow prediction during intense rainfall events, which lead to flooding, using DART and the Weather Research and Forecasting model and the Noah-MP land model (WRF-Hydro). Building an integrated atmosphere and ocean forecasting system using DART and WRF for the Red Sea Initiative. Understanding air pollution using a global meteorology-aerosol-chemistry prediction system that assimilates aerosol optical depth, carbon monoxide, and weather observations into the Community Atmosphere Model with Chemistry (CAM-Chem). Assimilating observations of the Earth system from satellites into the Model for Prediction Across Scales (MPAS; regional and global) using observation operators from the Joint Effort for Data assimilation Integration (JEDI), bias correction for satellite retrievals from the Gridpoint Statistical Interpolation (GSI), and the assimilation environment of DART. Deciphering the flow dependency of forecast errors in the tropics and the relative importance of wind and mass information for tropical analyses. Connecting the U.S. Department of Energy’s E3SM atmospheric model with a broad spectrum of observations to perform short ensemble hindcast simulations for model development and evaluation. Generating atmospheric reanalysis data sets from CAM, which enables efficient data assimilation in other components of the Earth system; ocean, land, cryosphere, … Improving DART by giving users more control over how observations are assimilated, and supporting the assimilation of additional observations, such as radiances through the use of the RTTOV software.

Rebecca Buchholz

and 9 more

Fire emissions are an important component of global models, which help to understand the influence of sources, transport and chemistry on atmospheric composition. Global fire emission inventories can vary substantially due to the assumptions made in the emission creation process, including the defined vegetation type, fire detection, fuel loading, fraction of vegetation burned and emissions factors. Here, we focus on the uncertainty in emission factors and the resulting impact on modeled composition. Our study uses the Community Atmosphere Model with chemistry (CAM-chem) to model atmospheric composition for 2014, a year chosen for the relatively quiet El Niño Southern Oscillation activity. We focus on carbon monoxide (CO), a trace gas emitted from incomplete combustion and also produced from secondary oxidation of volatile organic compounds (VOCs). Fire is a major source of atmospheric CO and VOCs. Modeled CO from four fire emission inventories (CMIP6/GFED4s, QFED2.5, GFAS1.2 and FINN1.5) are compared after being implemented in CAM-chem. Multiple sensitivity tests are performed based on CO and VOC emission factor uncertainties. We compare model output in the 14 basis regions defined by the Global Fire Emissions Database (GFED) team and evaluate against CO observations from the Measurements of Pollution in the Troposphere (MOPITT) satellite-based instrument. For some regions, emission factor uncertainty spans the results found by using different inventories. Finally, we use modeled ozone (O3) to briefly investigate how emission factor uncertainty influences the atmospheric oxidative environment. Overall, accounting for emission factor uncertainty when modeling atmospheric chemistry can lend a range of uncertainty to simulated results.

Benjamin Gaubert

and 14 more

We use the global Community Earth System Model to investigate the response of secondary pollutants (ozone O3, secondary organic aerosols SOA) in different parts of the world in response to modified emissions of primary pollutants during the COVID-19 pandemic. We quantify the respective effects of the reductions in NOx and in VOC emissions, which, in most cases, affect oxidants in opposite ways. Using model simulations, we show that the level of NOx has been reduced by typically 40 % in China during February 2020 and by similar amounts in many areas of Europe and North America in mid-March to mid-April 2020, in good agreement with space and surface observations. We show that, relative to a situation in which the emission reductions are ignored and despite the calculated increase in hydroxyl and peroxy radicals, the ozone concentration increased only in a few NOx-saturated regions (northern China, northern Europe and the US) during the winter months of the pandemic when the titration of this molecule by NOx was reduced. In other regions, where ozone is NOx-controlled, the concentration of ozone decreased. SOA concentrations decrease in response to the concurrent reduction in the NOx and VOC emissions. The model also shows that atmospheric meteorological anomalies produced substantial variations in the concentrations of chemical species during the pandemic. In Europe, for example, a large fraction of the ozone increase in February 2020 was associated with meteorological anomalies, while in the North China Plain, enhanced ozone concentrations resulted primarily from reduced emissions of primary pollutants.

Rebecca Buchholz

and 5 more

Fire emissions are a major contributor to atmospheric composition, affecting atmospheric oxidizing capacity and air quality. Transported amounts from Northern Hemisphere boreal fires can reach the pristine Arctic atmosphere as well as impact air quality in populated regions. Carbon monoxide (CO) is a useful trace gas emitted from fires that can be used to link extreme fire events with climate variability. We use our recently developed statistical tool to investigate the climate drivers of satellite measured CO variability in two Northern Hemisphere boreal fire regions: northwest Canada and Siberia. Our focus is on quantifying the ability of climate mode indices for the Pacific, Atlantic, Indian and Arctic Oceans in predicting CO amounts in these regions. Climate mode indices El Niño Southern Oscillation (ENSO), Tropical North Atlantic (TNA), the Dipole Mode Index (DMI) and the Arctic Oscillation (AO) are used to develop statistical models of column CO interannual variability from the Measurements of Pollution In The Troposphere (MOPITT) satellite instrument, for the time period covering 2001-2017. In addition, we assess the ability of fire emission inventories to reproduce CO, including the Fire Inventory from NCAR (FINN), the NASA Quick Fire Emissions Dataset (QFED) and the Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS). These are implemented in the NCAR Community Atmosphere Model with chemistry (CAM-chem) and subsequently evaluated against MOPITT CO observations. Emission uncertainty contribution to inter-inventory differences are quantified, and the modeled contribution of fires to CO interannual variability is determined.

Rebecca Buchholz

and 10 more

Atmospheric carbon monoxide (CO) has been decreasing globally for the last two decades. Recently, positive fire trends in Northern Hemisphere boreal regions may have impacted the decreasing CO. Additionally, time-varying air quality policies will have different impacts on atmospheric composition and related trends. Aerosols are co-emitted with CO from both fires and anthropogenic sources. Consequently, a combined trend analysis of CO and aerosol optical depth (AOD) measurements from space can help elucidate the drivers of regional differences in the CO trend. We use valuable long-term records from two instruments aboard the Terra satellite. Measurements of Pollution in the Troposphere (MOPITT) CO and AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument are examined hemispherically and in sub-regions to determine trends between 2002 and 2018. The records are further split into two sub-periods in order to examine temporal stability in the trend values. We also assess the CO trends in monthly percentile values to use seasonal information when interpreting trend contributions. Our focus is on four major population centers: Southeast USA, Europe, Northeast China and North India, as well as biomass burning regions in both hemispheres. Our results show that globally, CO declines faster in the first half of the record compared to the second half. Both atmospheric species are important when interpreting trends in the smaller regions. Northern Hemisphere boreal fire regions show a regime-shift in their seasonality for both CO and AOD, which may counteract the downward trend in CO. Anthropogenic regions with minimal air quality management such as North India become more globally relevant as the global CO trend weakens. We also find clear evidence of the atmospheric impact of policy choices. Overall, we observe that local changes in biomass burning and air quality can counteract the global downward trend in CO.

Rebecca Buchholz

and 9 more