Wandi Yu

and 10 more

The Hunga Tonga Hunga-Ha’apai (HTHH) volcanic eruption on 15 January 2022 injected water vapor and SO2 into the stratosphere. Several months after the eruption, significantly stronger westerlies, and a weaker Brewer-Dobson circulation developed in the stratosphere of the Southern Hemisphere and were accompanied by unprecedented temperature anomalies in the stratosphere and mesosphere. In August 2022 the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument observed record-breaking temperature anomalies in the stratosphere and mesosphere that alternate signs with altitude. Ensemble simulations carried out with the Whole Atmosphere Community Climate Model (WACCM6) indicate that the strengthening of the stratospheric westerlies explains the mesospheric temperature changes. The stronger westerlies cause stronger westward gravity wave drag in the mesosphere, accelerating the mesospheric mean meridional circulation. The stronger mesospheric circulation, in turn, plays a dominant role in driving the changes in mesospheric temperatures. This study highlights the impact of large volcanic eruptions on middle atmospheric dynamics and provides insight into their long-term effects in the mesosphere. On the other hand, we could not discern a clear mechanism for the observed changes in stratospheric circulation. In fact, an examination of the WACCM ensemble reveals that not every member reproduces the large changes observed by SABER. We conclude that there is a stochastic component to the stratospheric response to the HTHH eruption.

Sean M. Davis

and 15 more

Since June 2017, the Stratospheric Aerosol and Gas Experiment III instrument on the International Space Station (SAGE III/ISS) has been providing vertical profiles of upper tropospheric to stratospheric water vapor (WV) retrieved from solar occultation transmission measurements. The goal of this paper is to evaluate the publicly released SAGE III/ISS beta version 5.1 WV retrieval through intercomparison with independent satellite- and balloon-based measurements, and to present recommendations for SAGE III/ISS data quality screening criteria. Overall, we find that SAGE III/ISS provides high quality water vapor measurements. Low quality profiles are predominately due to retrieval instabilities in the upper stratosphere that cause step-like changes in the profile, and aerosol/cloud-related interferences (below ~20 km). Above 35 km, the retrieved uncertainty and noise in the data rapidly grow with increasing altitude due to relatively low extinction signal from water vapor. Below the tropopause, retrieved uncertainty increases with decreasing altitude due to enhanced molecular scattering and aerosol extinction. After screening low-quality data using the procedures described herein, SAGE III/ISS WV is shown to be in good agreement with independent satellite and balloon-based measurements. From 20 – 40 km, SAGE III/ISS WV v5.1 data exhibit a bias of 0.0 to -0.5 ppmv (~10 %) relative to the independent data, depending on the instrument and altitude. Despite its status as a beta version, the level of SAGE III/ISS WV agreement with independent data is similar to previous SAGE instruments, and therefore the data are suitable for scientific studies of stratospheric water vapor.