Mark Schoeberl

and 7 more

We describe our Solar Aerosol and Gas Experiment (SAGE) III/ISS cloud detection algorithm. As in previous SAGE II/III studies this algorithm uses the extinction at 1022 nm and the extinction color ratio 520nm/1022nm to separate aerosols and clouds. We identify three types of clouds: visible cirrus (extinction coefficient > 3x10-2 km-1, subvisible cirrus (extinction < 3x10-2 km-1 and >10-3 km-1), and very low extinction cloud-aerosol mixtures (extinction < 10-3 km-1). Visible cirrus cannot be quantitatively measured by SAGE because of its high extinction, but we infer the presence of cirrus through the solar attenuation of the SAGE vertical scan. We then assume that cirrus layers extend 0.5 km below the scan termination height. SAGE cirrus cloud fraction estimated this way is in qualitative agreement with CALIPSOmeasurements. Analyzing three years of SAGE III/ISS data, we find that visible cirrus and subvisible cirrus have nearly equal abundance in the tropical upper troposphere and the average cloud fraction is about 25%. At 16 km, the highest concentration visible cirrus and subvisible cirrus is over the Tropical West Pacific, central Africa and central South America during winter. Latitudinal gaps in zonal mean cloud fraction and average aerosol extinction apparent in the subtropical transition region are aligned with descending branch of the residual mean circulation. We also identify four anomalous aerosol extinction periods that can be tentatively assigned to significant volcanic or fire events. Using tropopause relative coordinates, we show that maximum cloud top heights are consistently restricted to a narrow region near the tropopause.

Sean M. Davis

and 15 more

Since June 2017, the Stratospheric Aerosol and Gas Experiment III instrument on the International Space Station (SAGE III/ISS) has been providing vertical profiles of upper tropospheric to stratospheric water vapor (WV) retrieved from solar occultation transmission measurements. The goal of this paper is to evaluate the publicly released SAGE III/ISS beta version 5.1 WV retrieval through intercomparison with independent satellite- and balloon-based measurements, and to present recommendations for SAGE III/ISS data quality screening criteria. Overall, we find that SAGE III/ISS provides high quality water vapor measurements. Low quality profiles are predominately due to retrieval instabilities in the upper stratosphere that cause step-like changes in the profile, and aerosol/cloud-related interferences (below ~20 km). Above 35 km, the retrieved uncertainty and noise in the data rapidly grow with increasing altitude due to relatively low extinction signal from water vapor. Below the tropopause, retrieved uncertainty increases with decreasing altitude due to enhanced molecular scattering and aerosol extinction. After screening low-quality data using the procedures described herein, SAGE III/ISS WV is shown to be in good agreement with independent satellite and balloon-based measurements. From 20 – 40 km, SAGE III/ISS WV v5.1 data exhibit a bias of 0.0 to -0.5 ppmv (~10 %) relative to the independent data, depending on the instrument and altitude. Despite its status as a beta version, the level of SAGE III/ISS WV agreement with independent data is similar to previous SAGE instruments, and therefore the data are suitable for scientific studies of stratospheric water vapor.

H. J. Ray Wang

and 18 more

The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) was launched on February 19, 2017 and began routine operation in June 2017. The first two years of SAGE III/ISS (v5.1) solar ozone data were evaluated by using correlative satellite and ground-based measurements. Among the three (MES, AO3, and MLR) SAGE III/ISS solar ozone products, AO3 ozone shows the best accuracy and precision, with mean biases less than 5% for altitudes ~15–55 km in the mid-latitudes and ~20–55 km in the tropics. In the lower stratosphere and upper troposphere, AO3 ozone shows high biases that increase with decreasing altitudes and reach ~10% near the tropopause. Preliminary studies indicate that those high biases primarily result from the contributions of the oxygen dimer (O) not being appropriately removed within the ozone channel. The precision of AO3 ozone is estimated to be ~3% for altitudes between 20 and 40 km. It degrades to ~10–15% in the lower mesosphere (~55 km), and ~20–30% near the tropopause. There could be an altitude registration error of ~100 meter in the SAGE III/ISS auxiliary temperature and pressure profiles. This, however, does not affect retrieved ozone profiles in native number density on geometric altitude coordinates. In the upper stratosphere and lower mesosphere (~40–55 km) the SAGE III/ISS (and SAGE II) sunset ozone values are systematically higher than sunrise data by ~5–8% which are almost twice larger than what observed by other satellites or model predictions. This feature needs further study.