Gustaf Hugelius

and 42 more

The long-term net sink of carbon (C), nitrogen (N) and greenhouse gases (GHGs) in the northern permafrost region is projected to weaken or shift under climate change. But large uncertainties remain, even on present-day GHG budgets. We compare bottom-up (data-driven upscaling, process-based models) and top-down budgets (atmospheric inversion models) of the main GHGs (CO2, CH4, and N2O) and lateral fluxes of C and N across the region over 2000-2020. Bottom-up approaches estimate higher land to atmosphere fluxes for all GHGs compared to top-down atmospheric inversions. Both bottom-up and top-down approaches respectively show a net sink of CO2 in natural ecosystems (-31 (-667, 559) and -587 (-862, -312), respectively) but sources of CH4 (38 (23, 53) and 15 (11, 18) Tg CH4-C yr-1) and N2O (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N2O-N yr-1) in natural ecosystems. Assuming equal weight to bottom-up and top-down budgets and including anthropogenic emissions, the combined GHG budget is a source of 147 (-492, 759) Tg CO2-Ceq yr-1 (GWP100). A net CO2 sink in boreal forests and wetlands is offset by CO2 emissions from inland waters and CH4 emissions from wetlands and inland waters, with a smaller additional warming from N2O emissions. Priorities for future research include representation of inland waters in process-based models and compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more in-situ flux observations and improved resolution in upscaling.

Yolandi Ernst

and 30 more

As part of the REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project, we developed a comprehensive African Greenhouse gases (GHG) budget for the period 2010-2019 and compared it to the budget over the 1985-2009 (RECCAP1) period. We considered bottom-up process-based models, data-driven remotely sensed products, and national GHG inventories in comparison with top-down atmospheric inversions, accounting also for lateral fluxes. We incorporated emission estimates derived from novel methodologies for termites, herbivores, and fire, which are particularly important in Africa. We further constrained global woody biomass change products with high-quality regional observations. During the RECCAP2 period, Africa’s carbon sink capacity is decreasing, with net ecosystem exchange switching from a small sink of −0.61 ± 0.58 PgCyr−1 in RECCAP1 to a small source in RECCAP2 at 0.162 (-1.793/2.633) PgCyr-1. Net CO2 emissions estimated from bottom-up approaches were 1.588 (-6.461/11.439) PgCO2yr-1, net CH4 were 78.453 (36.665/59.677) TgCH4yr-1) and net N2O were 1.81 (1.716/2.239) TgN2Oyr-1. Top-down atmospheric inversions showed similar trends. LUC emissions increased, representing one of the largest contributions at 1.746 (0.841/2.651) PgCO2eq yr-1 to the African GHG budget and almost similar to emissions from fossil fuels at 1.743 (1.531/1.956) PgCO2eq yr-1, which also increased from RECCAP1. Additionally, wildfire emissions decreased, while fuelwood burning increased. For most component fluxes, uncertainty is large, highlighting the need for increased efforts to address Africa-specific data gaps. However, for RECCAP2, we improved our overall understanding of many of the important components of the African GHG budget that will assist to inform climate policy and action.

Xuhui Wang

and 39 more

East Asia (China, Japan, Koreas and Mongolia) has been the world’s economic engine over at least the past two decades, exhibiting a rapid increase in fossil fuel emissions of greenhouse gases (GHGs) and has expressed the recent ambition to achieve climate neutrality by mid-century. However, the GHG balance of its terrestrial ecosystems remains poorly constrained. Here, we present a synthesis of the three most important long-lived greenhouse gases (CO2, CH4 and N2O) budgets over East Asia during the decades of 2000s and 2010s, following a dual constraint bottom-up and top-down approach. We estimate that terrestrial ecosystems in East Asia is close to neutrality of GHGs, with a magnitude of between 196.9 ± 527.0 Tg CO2eq yr-1 (the top-down approach) and -20.8 ± 205.5 Tg CO2eq yr-1 (the bottom-up approach) during 2000-2019. This net GHG emission includes a large land CO2 sink (-1251.3 ± 456.9 Tg CO2 yr-1 based on the top-down approach and -1356.1 ± 155.6 Tg CO2 yr-1 based on the bottom-up approach), which is being fully offset by biogenic CH4 and N2O emissions, predominantly coming from the agricultural sector. Emerging data sources and modelling capacities have helped achieve agreement between the top-down and bottom-up approaches to within 20% for all three GHGs, but sizeable uncertainties remain in several flux terms. For example, the reported CO2 flux from land use and land cover change varies from a net source of more than 300 Tg CO2 yr-1 to a net sink of ~-700 Tg CO2 yr-1.