Qing Sun

and 22 more

Nitrous oxide (N2O) is a greenhouse gas and an ozone-depleting agent with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at the air sampling sites: Alert, Barrow, Ragged Point, Samoa, Ascension Island, and Cape Grim for the modern and preindustrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but, seasonal peak-to-peak amplitudes differ severalfold across models. After transport, the seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21-52% of median) for land, 0.14 to 0.25 ppb (19-42%) for ocean, and 0.13 to 0.76 ppb (26-52%) for combined flux contributions. The observed range is 0.53 to 1.08 ppb. The stratospheric contributions to aN2O, inferred by the difference between surface-troposphere model and observations, show 36-126% larger amplitudes and minima delayed by ~1 month compared to Northern Hemisphere site observations. Our results demonstrate an increasing importance of land fluxes for aN2O seasonality, with land fluxes and their seasonal amplitude increasing since the preindustrial era and are projected to grow under anthropogenic activities. In situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting surface N2O sources under ongoing global warming.

Gustaf Hugelius

and 42 more

The long-term net sink of carbon (C), nitrogen (N) and greenhouse gases (GHGs) in the northern permafrost region is projected to weaken or shift under climate change. But large uncertainties remain, even on present-day GHG budgets. We compare bottom-up (data-driven upscaling, process-based models) and top-down budgets (atmospheric inversion models) of the main GHGs (CO2, CH4, and N2O) and lateral fluxes of C and N across the region over 2000-2020. Bottom-up approaches estimate higher land to atmosphere fluxes for all GHGs compared to top-down atmospheric inversions. Both bottom-up and top-down approaches respectively show a net sink of CO2 in natural ecosystems (-31 (-667, 559) and -587 (-862, -312), respectively) but sources of CH4 (38 (23, 53) and 15 (11, 18) Tg CH4-C yr-1) and N2O (0.6 (0.03, 1.2) and 0.09 (-0.19, 0.37) Tg N2O-N yr-1) in natural ecosystems. Assuming equal weight to bottom-up and top-down budgets and including anthropogenic emissions, the combined GHG budget is a source of 147 (-492, 759) Tg CO2-Ceq yr-1 (GWP100). A net CO2 sink in boreal forests and wetlands is offset by CO2 emissions from inland waters and CH4 emissions from wetlands and inland waters, with a smaller additional warming from N2O emissions. Priorities for future research include representation of inland waters in process-based models and compilation of process-model ensembles for CH4 and N2O. Discrepancies between bottom-up and top-down methods call for analyses of how prior flux ensembles impact inversion budgets, more in-situ flux observations and improved resolution in upscaling.

Nick Bouskill

and 17 more

Mountainous watersheds are characterized by variability in functional traits, including vegetation, topography, geology, and geomorphology, which together determine nitrogen (N) retention, and release. Coal Creek and East River are two contrasting catchments within the Upper Colorado River Basin that differ markedly in total nitrate (NO3-) export. The East River has a diverse vegetation cover, sinuous floodplains, and is underlain by N-rich marine shale, resulting in a three to twelve times greater total NO3- export relative to the conifer-dominated Coal Creek. While this can partly be explained by the larger size of the East River, the distinct watershed traits of these two catchments imply different mechanisms controlling the aggregate N-export signal. A causality analysis shows biogenic and geogenic processes were critical in determining NO3- export from the East River catchment. Stable isotope ratios of NO3- (δ15NNO3 and δ18ONO3) show the East River catchment is a strong hotspot for biogeochemical processing of NO3- at the soil-saprolite interface and within the floodplain prior to export. By contrast, the conifer-dominated Coal Creek retained nearly all (~97 %) atmospherically-deposited NO3-, and its export was controlled by catchment hydrological traits (i.e., snowmelt periods and water table depth). The conservative N-cycle within Coal Creek is likely due to the abundance of conifer trees, and a smaller riparian region, retaining more NO3- overall and reduced processing prior to export. This study highlights the value of integrating isotope systematics to link watershed functional traits to mechanisms of watershed element retention and release.

Meng Luo

and 5 more

Land use and land cover change (LULCC) represents a key process of human-Earth system interaction and has profound impacts on ecosystem carbon cycling. As a key input for ecosystem models, future gridded LULCC data is typically spatially downscaled from regionally LULCC projections by integrated assessment models. The uncertainty associated with different spatial downscaling methods and its impacts on subsequent model projections have been historically ignored and rarely examined. This study investigated this problem using two representative spatial downscaling methods and focused on the impacts on the carbon cycle over ABoVE domain. Specifically, we used the Future Land Use Simulation model (FLUS) and Demeter model to generate 0.25-degree gridded LULCC data with the same input of regional LULCC projections from Global Change Analysis Model, under SSP126 and SSP585. The two sets of downscaled LULCC were used to drive CLM5 to prognostically simulate terrestrial carbon cycle dynamics over the 21st century. The results suggest large spatial-temporal differences between two LULCC datasets under both SSP126 and SSP585. The LULCC differences further lead to large discrepancies in the spatial patterns of projected carbon cycle variables, which are more than 79% of the contributions of LULCC in 2100. Besides, the difference for LULCC and carbon flux under SSP126 is generally larger than those under SSP585. This study highlights the importance of considering the uncertainties induced by spatial downscaling process in future LULCC projections and carbon cycle simulations.

Ryan G Knox

and 14 more

Zhen Zhang

and 28 more