Sai Veena Sunkara

and 4 more

Robustness analysis can support long-term planning, design and operation of large-scale water infrastructure projects confronting deeply uncertain futures. Diverse actors, contextual specificities, sectoral interests, and risk attitudes make it difficult to identify an acceptable and appropriate robustness metric to rank decision alternatives under deep uncertainty. Here, we contribute an exploratory framework to demonstrate how methodological choices affect robustness evaluation. The framework is applied to a multi-actor, multi-sector Inchampalli-Nagarjuna Sagar (INS) water transfer megaproject in Southern India. We evaluate a suite of dynamic adaptive water transfer strategies discovered using evolutionary multi-objective direct policy search (EMODPS), a status quo strategy of no water transfer, and a strategy proposed by regional authorities. We evaluate robustness across wide-ranging scenarios that capture key uncertainties in potential future changes in reservoir inflows and water demands in the basins. Results show that the priorities of different actors, sectoral perspectives, and risk attitude significantly affect robustness rankings of strategies. We found that compromise strategies obtained from EMODPS are better able to balance the diverse performance requirements across various actors and sectors when compared to the no-transfer and proposed transfer. We reveal a key robustness tradeoff between the donor basin’s ecological requirements and the recipient basin’s socio-economic requirements. While robustness analysis is central to water infrastructure planning, we show why exploratory robustness analyses that engage with conflicting stakeholder objectives is vital for long-term sustainability. Furthermore, the selection of compromise solutions should be guided by an explicit understanding of how assumed risk attitudes shape stakeholders’ understanding of consequential vulnerabilities.

Lillian Bei Jia Lau

and 2 more

Urban water utilities are increasingly exploring cooperative regional water supply investment and management strategies due to climate change and growing demands. Theoretically, regional cooperative agreements promise improved resource efficiency by realizing economies of scale, adding flexibility for achieving improved supply reliability, and, ideally, limiting individual and collective financial risks. However, there has been little research exploring how implementation uncertainties in the partners’ cooperative actions shape infrastructure investment and management pathways’ robustness and drive counterparty risks. Counterparty risks potentially exacerbate collaborating partners’ vulnerability to the supply and financial challenges they initially sought to mitigate through cooperation. To address these concerns, we introduce the Safe Operating Spaces for Deeply Uncertain Water Supply Pathways (DUSOS Pathways) framework. The framework, demonstrated on the multi-city Sedento Valley benchmarking test case, facilitates the formal characterization of the effects of implementation uncertainty within cooperative regional water supply investment and management policy pathways. Results demonstrate the path-dependent effects of implementation uncertainties in short-term operational drought mitigation instruments and long-term infrastructure investments. Our analysis further reveals the potential for increased regional conflict due to asymmetries between partners’ vulnerabilities to the actions of cooperating partners that can be exacerbated by other deeply uncertain factors that reduce their robustness (e.g., demand growth rates). The study finally delineates safe operating spaces, beyond which utilities experience robustness degradation and increased vulnerabilities to future uncertainties to guide implementation of cooperative policy pathways. Overall, this framework is broadly applicable to regional systems seeking to navigate complex cooperative regional water supply investment and management policy pathways.

David F Gold

and 3 more

Regionalization approaches wherein utilities in close geographic proximity cooperate to manage drought risks and co-invest in new infrastructure are increasingly necessary strategies for leveraging economies of scale to meet growing demands and navigate deeply uncertain risks. Successful regional cooperative investment and management pathways, however, must equitably balance the interests of multiple partners while navigating power relationships between regional actors. In long-term infrastructure planning contexts, this challenge is heightened by the evolving system-state dynamics, which may be fundamentally reshaped by infrastructure investment. This work introduces Equitable, Robust, Adaptive, and Stable Deeply Uncertain Pathways (DU PathwaysERAS), an exploratory modeling framework for developing regional water supply management and infrastructure investment pathways. Our framework explores equity and power relationships within cooperative pathways using multiple rival framings of robustness, each representing a competing hypothesis about how performance objectives should be prioritized. To capture the time-evolving dynamics of infrastructure pathways, DU PathwaysERAS features new tools to measure the adaptive capacity of pathway policies and evaluate time-evolving vulnerability. We demonstrate our framework on a six-utility water supply partnership seeking to develop cooperative infrastructure investment pathways in the Research Triangle, North Carolina. Our results indicate that commonly employed framings of robustness can have large and unintended adverse consequences for regional equity. Results further illustrate that regional and individual vulnerabilities are highly interdependent, emphasizing the need to craft agreements that limit counterparty risks from the actions of cooperating partners. Beyond the Research Triangle, these results are broadly applicable to cooperative water supply infrastructure investment and management globally.

David E Gorelick

and 3 more

Urban water utilities, facing rising demands and limited supply expansion options, increasingly partner with neighboring utilities to develop and operate shared infrastructure. Inter-utility agreements can reduce costs via economies of scale and help limit environmental impacts, as substitutes for independent investments in large capital projects. However, unexpected shifts in demand growth or water availability, deviating from projections underpinning cooperative agreements, can introduce both supply and financial risk to utility partners. Risks may also be compounded by asymmetric growth in demand across partners or inflexibility of the agreement structure itself to adapt to changing conditions of supply and demand. This work explores the viability of both fixed and adjustable capacity inter-utility cooperative agreements to mitigate regional water supply and financial risk for utilities that vary in size, growth expectations, and independent infrastructure expansion options. Agreements formalized for a shared regional water treatment plant with fixed or adjustable treatment capacities, coupled with structured financing for partner utilities, are found to significantly improve regional supply reliability and financial outcomes. Regional improvements in performance, however, mask tradeoffs among individual agreement partners. Adjustable treatment capacity allocations add flexibility to inter-utility agreements but can compound the financial risk of each utility as a function of the decision-making of the other partners. Often the sensitivity to partners' decision-making under an adjustable agreement degrades financial performance, relative to agreements with fixed capacities allocated to each partner. Our results demonstrate the significant benefits cooperative agreements offer, providing a template to aid decision-makers in development of water supply partnerships.

David F Gold

and 3 more

Regional cooperation among urban water utilities is a powerful mechanism for improving supply reliability and financial stability in urban water supply systems. Through coordinated drought mitigation and joint infrastructure investment, urban water utilities can efficiently exploit existing water supplies and reduce or delay the need for new supply infrastructure. However, cooperative water management brings new challenges for planning and implementation. Rather than accounting for the interests of a single actor, cooperative policies must balance potentially competing interests between cooperating partners. Structural imbalances within a regional system can lead to conflict between cooperating partners that destabilize otherwise robust planning alternatives. This work contributes a new exploratory modeling centered framework for assessing cooperative stability and mapping power relationships in cooperative infrastructure investment and water supply management policies. Our framework uses multi-objective optimization as an exploratory tool to discover how cooperating partners may be incentivized to defect from robust regional water supply partnership opportunities and identifies how the actions of each regional partner shape the vulnerability of its cooperating partners. Our methodology is demonstrated on the Sedento Valley, a highly challenging regional urban water supply benchmarking problem. Our results reveal complex regional power relationships between the region's cooperating partners and suggest ways to improve cooperative stability.