Remington Rohel

and 2 more

Super Dual Auroral Radar Network (SuperDARN) consists of more than 30 monostatic high-frequency (HF, 10-18~MHz) radars which utilise signals scattered from decameter-scale ionospheric irregularities for studying dynamic processes in the ionosphere. By combining line-of-sight velocity measurements of ionospheric scatter echoes from radars with overlapping fields of view, SuperDARN provides maps of ionospheric plasma drift velocity over mid and high latitudes. The conventional SuperDARN radars consecutively scan through sixteen beam directions with dwelling time of 3.5 s/beam, which places a lower limit of one minute to sample the entire field of view. In this work we remove this limitation by utilizing advanced capabilities of the recently developed Borealis digital SuperDARN radar system. Combining a wide transmission beam with multiple narrow reception beams allows us to sample all conventional beam directions simultaneously and to increase the sampling rate of the entire field of view by up to sixteen times without noticeable deterioration of the data quality. The wide-beam emission also enabled the implementation of multistatic operations, where ionospheric scatter signals from one radar are received by other radars with overlapping viewing areas. These novel operations required the development of a new model to determine the geographic location of the source of the multistatic radar echoes. Our preliminary studies showed that, in comparison with the conventional monostatic operations, the multistatic operations provide a significant increase in geographic coverage, in some cases nearly doubling it. The multistatic data also provide additional velocity vector components increasing the likelihood of reconstructing full plasma drift velocity vectors.

Nina Kristine Eriksen

and 10 more

Michael Lockwood

and 1 more

Using 65,133 hourly averages of transpolar voltage Φ(PC) from observations made over 25 years by the SuperDARN radars, with simultaneous SML and interpolated am geomagnetic indices, we study their optimum interplanetary coupling functions. We find lags of 18, 31 and 45 min. for Φ_{PC}, am and SML respectively, and fit using a general coupling function with three free fit exponents. To converge to a fit, we need to average interplanetary parameters and then apply the exponent which is a widely-used approximation: we show how and why this is valid for all interplanetary parameters, except the factor quantifying the effect of the clock angle of the interplanetary magnetic field, sin^(d)(θ/2), which must be computed at high time resolution and then averaged. We demonstrate the effect of the exponent d on the distribution, and hence weighting, of samples and show d is best determined from the requirement that the coupling function is a linear predictor, which yields d of 2.50+/-0.10, 3.00+/-0.22 and 5.23+/-0.48 for Φ_{PC}, am and SML. To check for overfitting, fits are made to half the available data and tested against the other half. Ensembles of 1000 fits are used to study the effect of the number of samples on the distribution of errors in individual fits and on systematic biases in the ensemble means. We find only a weak dependence of solar wind density for Φ_{PC} and SML but a significant one for am. The optimum coupling functions are shown to be significantly different for Φ_{PC}, am and SML.

Michael Lockwood

and 1 more

We use 214410 hourly observations of the transpolar voltage, ΦPC, from 25 years of observations by the SuperDARN radars, to confirm the central tenet of the Expanding-Contracting Polar Cap (ECPC) model of ionospheric convection that ΦPC responds to both dayside and nightside reconnection voltages (ΦD and ΦN). We show ΦPC increases at a fixed level of nightside auroral electrojet AL index with increasingly southward IMF (identifying the well-known effect of ΦD on ΦPC) but also with increasingly negative AL at a fixed southward IMF (identifying a distinct effect of ΦN on ΦPC ). We study the variation of ΦPC with time elapsed Δt since the IMF last pointed southward and show that low/large values occur when -AL is small/large. We have to allow for the fact that at lower numbers of radar echoes, ne , the matched potential re-analysis technique used to derive is influenced by the model used: this is done by a sensitivity study of the threshold of ne required. We show that for any threshold ΦPC falls to about 15kV for & Δt greater than about 15 hours giving an upper limit to the viscous-like voltage. It is shown that both ΦPC and -AL increase with increased solar wind dynamic pressure psw , but not as much as the mid-latitude geomagnetic range index am. We conclude psw increases both ΦD and ΦN through increasing the magnetic shear across the relevant current sheet but has a bigger effect on mid-latitude geomagnetic activity indices via the additional energy stored in the tail lobes.