Andrea Perez-Silva

and 4 more

Andrea Perez-Silva

and 5 more

Over the last two decades, geodetic and seismic observations have revealed a spectrum of slow earthquakes along the Hikurangi subduction zone in New Zealand. Of those, shallow slow slip events (SSEs) that occur at depths of less than 15 km along the plate interface show a strong along-strike segmentation in their recurrence intervals, which vary from ~1 year from offshore Tolaga Bay in the northeast to ~5 years offshore Cape Turnagain ~300 km to the southeast. To understand the factors that control this segmentation, we conduct numerical simulations of SSEs incorporating laboratory-derived rate-and-state friction laws with both planar and non-planar fault geometries. We find that a relatively simple model assuming a realistic non-planar fault geometry can reproduce the characteristics of shallow SSEs as constrained by geodetic observations. Our preferred model captures the magnitudes and durations of SSEs, as well as the northward decrease of their recurrence intervals. Our results indicate that the segmentation of SSEs’ recurrence intervals is favored by along-strike changes in both the plate convergence rate and the downdip width of the SSE source region. Modeled SSEs with longer recurrence interval concentrate in the southern part of the fault (offshore Cape Turnagain), where the plate convergence rate is lowest and the source region of SSEs is widest due to the shallower slab dip angle. Notably, the observed segmentation of shallow SSEs cannot be reproduced with a simple planar fault model, which indicates that a realistic plate interface is an important factor to account for in modeling SSEs.

Tim Naish

and 17 more

Anticipating and managing the impacts of sea-level rise for nations astride active tectonic margins requires rates of sea surface elevation change in relation to coastal land elevation to be understood. Vertical land motion (VLM) can either exacerbate or reduce sea-level changes with impacts varying significantly along a coastline. Determining rate, pattern, and variability of VLM near coasts leads to a direct improvement of location-specific relative sea level (RSL) estimates. Here, we utilise vertical velocity field from interferometric synthetic aperture radar (InSAR) data, calibrated with campaign and continuous Global Navigation Satellite System (GNSS), to determine the VLM for the entire coastline of New Zealand. Guided by existing knowledge of the seismic cycle, the VLM data infer long-term, interseismic rates of land surface deformation. We build probabilistic RSL projections using the Framework for Assessing Changes to Sea-level (FACTS) from IPCC Assessment Report 6 and ingest local VLM data to produce RSL projections at 7435 sites, thereby enhancing spatial coverage that was previously limited to tide gauges. We present ensembles of probability distributions of RSL for medium confidence climatic processes for each scenario to 2150 and low confidence processes to 2300. For regions where land subsidence is occurring at rates >2mm yr-1 VLM makes a significant contribution to RSL projections for all scenarios out 2150. Beyond 2150, for higher emissions scenarios, the land ice contribution to global sea level dominates. We discuss the planning implications of RSL projections, where timing of threshold exceedance for coastal inundation can be brought forward by decades.

Effat Behboudi

and 4 more

Knowledge of the contemporary in-situ stress orientations in the Earth’s crust can improve our understanding of active crustal deformation, geodynamic processes, and seismicity in tectonically active regions such as the Hikurangi Subduction Margin (HSM), New Zealand. The HSM subduction interface is characterized by varying slip behavior along strike, which may be a manifestation of variation in the stress state and the mechanical strength of faults and their hanging walls, or, alternatively, these variations in seismic behavior may generate variation in the stress state in space and time. In this study, we analyze borehole image and oriented four-arm caliper logs acquired from thirteen boreholes along the HSM to present the first comprehensive stress orientation dataset within the HSM upper plate. Our results reveal a NE-SW SHmax orientation (parallel to the Hikurangi margin) within the central HSM (Hawke’s Bay region) which rotates to a WNW- ESE SHmax orientation (roughly perpendicular to the Hikurangi margin) in the southern HSM. This rotation of SHmax orientation spatially correlates with along-strike variations in subduction interface slip behavior, characterized by creep and/or shallow episodic slip events in the central HSM and interseismic locking in the southern HSM. Observed borehole SHmax orientations are largely parallel to maximum contraction directions derived from geodetic surface deformation measurements, suggesting that modern stress orientations may reflect contemporary elastic strain accumulation processes related to subduction megathrust locking.
Slow slip events (SSEs) have been identified at subduction zones globally as an important link in the continuum between elastodynamic ruptures and stable creep. The northern Hikurangi margin is home to shallow SSEs which propagate to within 2 km of the seafloor and possibly to the trench, providing insights into the physical conditions conducive to SSE behavior. We report on a suite of friction experiments performed on protolith material entering the SSE source region at the Hikurangi margin, collected during the International Ocean Discovery Program Expedition 375. We performed velocity stepping and slide-hold-slide experiments over a range of fault slip rates, from plate rate (5 cm/yr) to ~1 mm/s and quantified the frictional velocity dependence and healing rates for a range of lithologies at different stresses. The friction velocity dependence (a-b) and critical slip distance Dc increase with fault slip rate in our experiments. We observe a transition from velocity weakening to strengthening at slip rates of ~0.3 µm/s. This velocity dependence of Dc could be due to a combination of dilatant strengthening and a widening of the active shear zone at higher slip rates. We document low healing rates in the clay-rich volcaniclastic conglomerates, which lie above the incoming plate basement at least locally, and relatively higher healing rates in the chalk lithology. Finally, our experimental constraints on healing rates in different input lithologies extrapolated to timescales of 1-10 years are consistent with the geodetically-inferred low stress drops and healing rates characteristic of the Hikurangi SSEs.