John-Robert Scholz

and 35 more

The instrument package SEIS (Seismic Experiment for Internal Structure) with the three very broadband and three short-period seismic sensors is installed on the surface on Mars as part of NASA’s InSight Discovery mission. When compared to terrestrial installations, SEIS is deployed in a very harsh wind and temperature environment that leads to inevitable degradation of the quality of the recorded data. One ubiquitous artifact in the raw data is an abundance of transient one-sided pulses often accompanied by high-frequency spikes. These pulses, which we term “glitches”, can be modeled as the response of the instrument to a step in acceleration, while the spikes can be modeled as the response to a simultaneous step in displacement. We attribute the glitches primarily to SEIS-internal stress relaxations caused by the large temperature variations to which the instrument is exposed during a Martian day. Only a small fraction of glitches correspond to a motion of the SEIS package as a whole caused by minuscule tilts of either the instrument or the ground. In this study, we focus on the analysis of the glitch+spike phenomenon and present how these signals can be automatically detected and removed from SEIS’ raw data. As glitches affect many standard seismological analysis methods such as receiver functions, spectral decomposition and source inversions, we anticipate that studies of the Martian seismicity as well as studies of Mars’ internal structure should benefit from deglitched seismic data.

Julian Kuehnert

and 11 more

Seismic waves generated by rockfalls contain valuable information on the properties of these events. However, as rockfalls mainly occur in mountainous regions, the generated seismic waves can be affected by strong surface topography variations. We present a methodology for investigating the influence of topography using a Spectral-Element-based simulation of 3D wave propagation in various geological media. This methodology is applied here to Dolomieu crater on the Piton de la Fournaise volcano, Reunion Island, but it can be used for other sites, taking into account local topography and medium properties. The complexity of wave fields generated by single-point forces is analyzed for different velocity models and topographies. Ground-motion amplification is studied relative to flat reference models, showing that Peak Ground Velocity (PGV) and total kinetic energy can be amplified by factors of up to 10 and 20, respectively. Simulations with Dolomieu-like crater shapes suggest that curvature variations are more influential than depth variations. Topographic effects on seismic signals from rockfalls at Dolomieu crater are revealed by inter-station spectral ratios. Results suggest that propagation along the topography rather than source direction dominates the spectral ratios and that resulting radiation patterns can be neglected. The seismic signature of single rockfall impacts is studied. Using Hertz contact theory, impact force and duration are estimated and then used to scale simulations, achieving order-of-magnitude agreement with observed signal amplitudes and frequency thresholds. Our study shows that combining Hertz theory with high-frequency seismic wave simulations on real topography improves the quantitative analysis of rockfall seismic signals.

Julian Kuehnert

and 10 more

Rockfalls generate seismic signals that can be used to detect and monitor rockfall activity. Event locations can be estimated on the basis of arrival times, amplitudes or polarization of these seismic signals. However, surface topography variations can significantly influence seismic wave propagation and hence compromise results. Here, we specifically use the signature of topography on the seismic signal to better constrain the source location. Seismic impulse responses are predicted using Spectral Element based simulation of 3D wave propagation in realistic geological media. Subsequently, rockfalls are located by minimizing the misfit between simulated and observed inter-station energy ratios. The method is tested on rockfalls at Dolomieu crater, Piton de la Fournaise volcano, Reunion Island. Both single boulder impacts and distributed granular flows are successfully located, tracking the complete rockfall trajectories by analyzing the signals in sliding time windows. Results from the highest frequency band (here 13-17\,Hz) yield the best spatial resolution, making it possible to distinguish detachment positions less than 100\,m apart. By taking into account surface topography, both vertical and horizontal signal components can be used. Limitations and the noise robustness of the location method are assessed using synthetic signals. Precise representation of the topography controls the location resolution, which is not significantly affected by the assumed impact direction. Tests on the network geometry reveal best resolution when the seismometers triangulate the source. We conclude that this method can improve the monitoring of rockfall activity in real time once a simulated database for the region of interest is created.

Jiaqi Li

and 11 more

Eleonore Stutzmann

and 24 more

Seismic noise recorded at the surface of Mars has been monitored since February 2019, using the seismometers of the InSight lander. The noise on Mars is 500 times lower than on Earth at night and it increases during the day. We analyze its polarization as a function of time and frequency in the band 0.03-1Hz. We use the degree of polarization to extract signals with stable polarization whatever their amplitude. We detect polarized signals at all frequencies and all times. Glitches correspond to linear polarized signals which are more abundant during the night. For signals with elliptical polarization, the ellipse is in the horizontal plane with clockwise and anti-clockwise motion at low frequency (LF). At high frequency (HF), the ellipse is in the vertical plane and the major axis is tilted with respect to the vertical. Whereas polarization azimuths are different in the two frequency bands, they are both varying as a function of local time and season. They are also correlated with wind direction, particularly during the day. We investigate possible aseismic and seismic origin of the polarized signals. Lander or tether noise are discarded. Pressure fluctuation transported by environmmental wind may explain part of the HF polarization but not the tilt of the ellipse. This tilt can be obtained if the source is an acoustic emission in some particular case. Finally, in the evening when the wind is low, the measured polarized signals seems to correspond to a diffuse seismic wavefield that would be the Mars microseismic noise.

Martin Schimmel

and 16 more

Mars is the first extraterrestrial planet with seismometers (SEIS) deployed directly on its surface in the framework of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission. The lack of strong Marsquakes, however, strengthens the need of seismic noise studies to additionally constrain the Martian structure. Seismic noise autocorrelations of single-station recordings permit the determination of the zero-offset reflection response underneath SEIS. We present a new autocorrelation study which employs state-of-the-art approaches to determine a robust reflection response by avoiding bias from aseismic signals which are recorded together with seismic waves due to unfavorable deployment and environmental conditions. Data selection and segmentation is performed in a data-adaptive manner which takes the data root-mean-square amplitude variability into account. We further use the amplitude-unbiased phase cross-correlation and work in the 1.2-8.9 Hz frequency band. The main target are crustal scale reflections, their robustness and convergence. The strongest signal appears at 10.6 s, and, if interpreted as P-wave reflection, would correspond to a discontinuity at about 24 km depth. This signal is a likely candidate for a reflection from the base of the Martian crust due to its strength, polarity, and stability. Additionally we identify, among the stable signals, a signal at about 6.85 s that can be interpreted as a P-wave reflection from the mid-crust at about 9.5 km depth.

Nicolas Compaire

and 16 more

The SEIS seismometer of the InSight mission was deployed on the ground of Elysium Planitia, on 19 December 2018. Interferometry techniques can be used to extract information on the internal structure from the autocorrelation of seismic ambient noise and coda of seismic events. In a single-station configuration, the zero-offset global reflection of the ground vertically below the seismometer can be approximated by the stacked ZZ autocorrelation function (ACF) for P-waves and the stacked EE and NN ACFs for S-waves, assuming a horizontally layered medium and homogeneously distributed and mutually uncorrelated noise sources. We analyze continuous records from the very broadband seismometer (SEIS-VBB), and correct for potential environmental disturbances through systematic preprocessing. For each Sol (martian day), we computed the correlations functions in 24 windows of one martian hour in order to obtain a total correlation tensor for various Mars local times. In addition, a similar algorithm is applied to the Marsquake waveforms in different frequency bands. Both stability analysis and inter-comparison between background noise and seismic event results suggest that the background seismic noise at the landing site is reliably observed only around 2.4 Hz, where an unknown mechanism is amplifying the ground shaking, and only during early night hours, when the noise induced by atmospheric disturbances is minimum. Seismic energy arrivals are consistently observed across the various data-sets. Some of these arrivals present multiples. These observations are discussed in terms of Mars’ crustal structure.