Wandi Yu

and 10 more

The Hunga Tonga Hunga-Ha’apai (HTHH) volcanic eruption on 15 January 2022 injected water vapor and SO2 into the stratosphere. Several months after the eruption, significantly stronger westerlies, and a weaker Brewer-Dobson circulation developed in the stratosphere of the Southern Hemisphere and were accompanied by unprecedented temperature anomalies in the stratosphere and mesosphere. In August 2022 the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument observed record-breaking temperature anomalies in the stratosphere and mesosphere that alternate signs with altitude. Ensemble simulations carried out with the Whole Atmosphere Community Climate Model (WACCM6) indicate that the strengthening of the stratospheric westerlies explains the mesospheric temperature changes. The stronger westerlies cause stronger westward gravity wave drag in the mesosphere, accelerating the mesospheric mean meridional circulation. The stronger mesospheric circulation, in turn, plays a dominant role in driving the changes in mesospheric temperatures. This study highlights the impact of large volcanic eruptions on middle atmospheric dynamics and provides insight into their long-term effects in the mesosphere. On the other hand, we could not discern a clear mechanism for the observed changes in stratospheric circulation. In fact, an examination of the WACCM ensemble reveals that not every member reproduces the large changes observed by SABER. We conclude that there is a stochastic component to the stratospheric response to the HTHH eruption.

Diego Sanchez

and 8 more

Traveling Ionospheric Disturbances (TIDs) are propagating variations in ionospheric electron densities that affect radio communications and can help with understanding energy transport throughout the coupled magnetosphere-ionosphere-neutral atmosphere system. Large scale TIDs (LSTIDs) have periods T ≈30-180 min, horizontal phase velocities vH≈‍100-‍250 m/s, and horizontal wavelengths H>1000 km and are believed to be generated either by geomagnetic activity or lower atmospheric sources. TIDs create concavities in the ionospheric electron density profile that move horizontally with the TID and cause skip-distance focusing effects for high frequency (HF, 3-30 MHz) radio signals propagating through the ionosphere. The signature of this phenomena is manifest as quasi-periodic variations in contact ranges in HF amateur radio communication reports recorded by automated monitoring systems such as the Weak Signal Propagation Reporting Network (WSPRNet) and the Reverse Beacon Network (RBN). In this study, members of the Ham Radio Science Citizen Investigation (HamSCI) present a climatology of LSTID activity using RBN and WSPRNet observations on the 1.8, 3.5, 7, 14, 21, and 28 MHz amateur radio bands from 2017. Results will be organized as a function observation frequency, longitudinal sector (North America and Europe), season, and geomagnetic activity level. Connections to geospace are explored via SYM-H and Auroral Electrojet indexes, while neutral atmospheric sources are explored using NASA’s Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2).

Irfan Azeem

and 15 more

The Scintillation Observations and Response of The Ionosphere to Electrodynamics (SORTIE) mission is a 6U CubeSat that has been making ionospheric measurements at 420 km altitude since February 19, 2020. The SORTIE sensor suite includes an Ion Velocity Meter (IVM), which is used in the present study to detect and characterize Traveling Ionospheric Disturbances (TIDs). On July 11, 2020 the SORTIE orbit passed over near-concentric TIDs that were seen in the Total Electron Content (TEC) data from ground-based Global Positioning System receivers distributed across the COntiguous United States (CONUS). The TID wave characteristics estimated from the IVM data agree well with those determined from the ground-based TEC data. The wave periods derived from the SORTIE data are shorter than the TID periods in the TEC data but are anticipated and explained in terms of the classical Doppler effect. A numerical simulation was performed using the Weather Research and Forecasting (WRF) model that shows excitation of atmospheric gravity waves (AGWs) from a deep convective storm over Texas preceding TID observations by SORTIE. We show that these AGWs were observed at stratospheric heights in close proximity to the convective storm by the Atmospheric Infrared Sounder onboard the NASA Aqua satellite, and in the lowermost mesosphere by the Cloud Imaging and Particle Size instrument onboard the NASA Aeronomy of Ice in the Mesosphere satellite. These storm-generated AGWs, or the associated higher-order AGWs, are the likely sources of the TIDs observed in the ground-based TEC and SORTIE IVM data.

V Lynn Harvey

and 4 more

The polar vortices play a central role in vertically coupling the Sun-Earth system by facilitating the descent of reactive odd nitrogen (NOx = NO + NO2) produced in the atmosphere by energetic particle precipitation (EPP-NOx). Downward transport of EPP-NOx from the mesosphere-lower thermosphere (MLT) to the stratosphere inside the winter polar vortex is particularly impactful in the wake of prolonged sudden stratospheric warming events. This work is motivated by the fact that state-of-the-art global climate models severely underestimate this EPP-NOx transport in the Arctic. As a step toward understanding the transport pathways by which MLT air enters the top of the polar vortex, we explore the extent to which Lagrangian Coherent Structures (LCS) impact the geographic distribution of NO near the polar winter mesopause in the Whole Atmosphere Community Climate Model eXtended version with Data Assimilation Research Testbed (WACCMX+DART). We present planetary wave-driven enhanced NO descent near the polar winter mesopause during 14 case studies from the Arctic winters of 2005/2006 through 2018/2019. During all cases the model is in reasonable agreement with SABER temperatures and SOFIE and ACE-FTS NO. Results show consistent LCS formation at the top of the polar vortex during minor and major SSWs. LCSs act to confine air with elevated NO to high latitudes as it descends into the top of the polar vortex. Descent of NO tends to be enhanced in traveling planetary wave troughs. These results present a new conceptual model of transport in the polar winter mesosphere whereby regional-scale, long-lived LCSs, coincident with the troughs of planetary waves, act to sequester elevated NOx at high latitudes until the air descends to lower altitudes.