This work introduces the use of Bayesian Neural Networks (BNNs) for inferring chlorophyll-a concentration ([CHL-a]) from remotely sensed data. BNNs are probabilistic models that associate a probability distribution to the neural network parameters, and rely on Bayes’ rule for training. The performance of the proposed probabilistic model is compared to that of standard ocean colour algorithms, namely, ocean colour 4 (OC4) and ocean color index (OCI). An extensive in situ bio-optical dataset was used to train and validate the ocean colour models. In contrast to established methods, the BNN allows for enhanced modeling flexibility, where different variables that affect phytoplankton phenology or describe the state of the ocean can be used as additional input for enhanced performance. Our results suggest that BNNs perform at least as well as established methods, and could achieve 20-40% lower mean squared errors when additional input variables are included, such as the sea surface temperature and its climatological mean alongside the coordinates of the prediction. The BNNs offer means for uncertainty quantification by estimating the probability distribution of [CHL-a], building confidence in the [CHL-a] predictions through the variance of the predictions. Furthermore, the output probability distribution can be used for risk assessment and decision making through analyzing the quantiles and shape of the predicted distribution.