Daniel van Denderen

and 6 more

Robust projections of future trends in global fish biomass, production and catches under different fishing scenarios are needed to inform fisheries policy in a changing climate. Trust in future projections, however, relies on establishing that the models used can accurately simulate past relationships between exploitation rates, catches and ecosystem states. Here we use fisheries catch and catch-only assessment models in combination with effort data to estimate regional fishing exploitation levels (defined as the fishing mortality relative to fishing mortality at maximum sustainable yield, F/FMSY). These estimates are given for large pelagic, forage and demersal fish types across all large marine ecosystems and the high seas between 1961 and 2004; and with a ‘ramp-up’ between 1841-1960. We find that global exploitation rates for both large pelagic and demersal fish are consistently higher than for forage fish and reached their peaks in the late 1980s. We use the exploitation rates to globally simulate historical fishing patterns in a mechanistic fish community model. We find a good match between model and reconstructed fisheries catch, both for total catch as well as catch distribution by functional type. Simulations show a clear deviation from an unfished model state, with a 25% reduction in fish biomass in large pelagic and demersal fish in shelf regions in the most recent years and a 50% increase in forage fish, primarily due to the release of predation pressure. These results can set a baseline from which the effect of climate change relative to fishing could be estimated.

Julia L. Blanchard

and 42 more

There is an urgent need for models that can robustly detect past and project future ecosystem changes and risks to the services that they provide to people. The Fisheries and Marine Ecosystem Model Intercomparison Project (FishMIP) was established to develop model ensembles for projecting long-term impacts of climate change on fisheries and marine ecosystems while informing policy at spatio-temporal scales relevant to the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) framework. While contributing FishMIP models have improved over time, large uncertainties in projections remain, particularly in coastal and shelf seas where most of the world’s fisheries occur. Furthermore, previous FishMIP climate impact projections have mostly ignored fishing activity due to a lack of standardized historical and scenario-based human activity forcing and uneven capabilities to dynamically model fisheries across the FishMIP community. This, in addition to underrepresentation of coastal processes, has limited the ability to evaluate the FishMIP ensemble’s ability to adequately capture past states - a crucial step for building confidence in future projections. To address these issues, we have developed two parallel simulation experiments (FishMIP 2.0) on: 1) model evaluation and detection of past changes and 2) future scenarios and projections. Key advances include historical climate forcing, that captures oceanographic features not previously resolved, and standardized fishing forcing to systematically test fishing effects across models. FishMIP 2.0 is a key step towards a detection and attribution framework for marine ecosystem change at regional and global scales, and towards enhanced policy relevance through increased confidence in future ensemble projections.