The West African Monsoon (WAM) strongly drives precipitation variability and seasonality across continental West Africa and the tropical Eastern Atlantic. However, the evolution of the WAM in the late Cenozoic, in response to changes in vegetation, atmospheric CO 2 , orbital forcings, paleogeography, and orography as well as its teleconnections such as the mean location of the African Easterly Jet (AEJ), Tropical Easterly Jet (TEJ), SubTropical Jet (STJ), Inter-Tropical Discontinuity (ITD) and low-level westerly flow is not well constrained. We contribute to understanding past WAM dynamics by performing high-resolution, time-specific paleoclimate simulation using General Circulation Model ECHAM5. We focus our analysis on the migration and intensification of the WAM and its associated atmospheric thermodynamic structure which influence the rainfall seasonality and patterns across the Sahel, Guinea Coast, and Sahara regions.