On 15 January 2022, the submarine volcano on the southwest Pacific island of Tonga violently erupted. Thus far, the ionospheric oscillation features caused by the volcanic eruption have not been identified. Here, observations from the Super Dual Auroral Radar Network (SuperDARN) radars and digisondes \change{are}{were} employed to analyze ionospheric oscillations in the Northern Hemisphere caused by the volcanic eruption in Tonga. Due to the magnetic field conjugate effect, the ionospheric oscillations were observed much earlier than the arrival of surface air pressure waves, and the maximum negative line-of-sight (LOS) velocity of the ionospheric oscillations exceeded 100 m/s in the F layer. After the surface air pressure waves arrived, the maximum LOS velocity in the E layer approached 150 m/s. A maximum upward displacement of 100 km was observed in the ionosphere. This work provides a new perspective for understanding the strong ionospheric oscillation caused by geological hazards observed on Earth.