The difference between precipitation and evaporation has been extensively used to characterize the water cycle’s response to global warming. However, when it comes to the global scale, the information provided by this metric is inconclusive. Herein, we discuss how the sum of precipitation and evaporation could complement the assessment of global water cycle intensification. To support our argument, we present a brief yet robust correlation analysis of both metrics in four reanalysis data sets (20CR v3, ERA-20C, ERA5, and NCEP/NCAR R1). Additionally, by combining the two metrics, we investigate how well the global water cycle fluxes are represented in the four reanalyses. Among them, we observe four different responses to the temperature increase between 1950-2010, with ERA5 showing the best agreement with the intensification hypothesis. We argue that these discrepancies would remain elusive with the traditional approach, which makes the utilization of the sum of precipitation and evaporation a valuable addition to our methodological toolbox for the assessment of the global water cycle intensification.