Yolandi Ernst

and 30 more

As part of the REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project, we developed a comprehensive African Greenhouse gases (GHG) budget for the period 2010-2019 and compared it to the budget over the 1985-2009 (RECCAP1) period. We considered bottom-up process-based models, data-driven remotely sensed products, and national GHG inventories in comparison with top-down atmospheric inversions, accounting also for lateral fluxes. We incorporated emission estimates derived from novel methodologies for termites, herbivores, and fire, which are particularly important in Africa. We further constrained global woody biomass change products with high-quality regional observations. During the RECCAP2 period, Africa’s carbon sink capacity is decreasing, with net ecosystem exchange switching from a small sink of −0.61 ± 0.58 PgCyr−1 in RECCAP1 to a small source in RECCAP2 at 0.162 (-1.793/2.633) PgCyr-1. Net CO2 emissions estimated from bottom-up approaches were 1.588 (-6.461/11.439) PgCO2yr-1, net CH4 were 78.453 (36.665/59.677) TgCH4yr-1) and net N2O were 1.81 (1.716/2.239) TgN2Oyr-1. Top-down atmospheric inversions showed similar trends. LUC emissions increased, representing one of the largest contributions at 1.746 (0.841/2.651) PgCO2eq yr-1 to the African GHG budget and almost similar to emissions from fossil fuels at 1.743 (1.531/1.956) PgCO2eq yr-1, which also increased from RECCAP1. Additionally, wildfire emissions decreased, while fuelwood burning increased. For most component fluxes, uncertainty is large, highlighting the need for increased efforts to address Africa-specific data gaps. However, for RECCAP2, we improved our overall understanding of many of the important components of the African GHG budget that will assist to inform climate policy and action.

Manoj Hari

and 3 more

Terrestrial primary productivity plays a pivotal role as a forcing factor of atmospheric CO2 and drives biospheric carbon dynamics. India is one of the largest GHGs emitters, yet less is understood in carbon cycling in terrestrial ecosystems. Here we explored the trend and magnitude of gross and net productivities of India for the last two decades (2000 – 2019) by integrating satellite observation from MODIS, remote sensing-based CASA model and twenty DGVMs from the TRENDY ensemble. Preliminary results exhibited a unimodal response across the data products with an overall positive trend and a declining decadal trend for 2010 – 2019. Alongside, the SPEI drought severity index across various ecological zones indicated India was more positively sensitive to wet span than the dry. We found that the ecosystems were drastically shifting their nature to C source with a positive trend in the productivities and were mediated by the changing climate. The analysis also revealed the increasing decadal amplitude of GPP by 0.0884 Pg C/Year, NBP by 0.0096 Pg C/Year, NEP by 0.0195 Pg C/Year, NPP by 0.0448 Pg C/Year and NEE by 0.0161 Pg C/Year. CASA underestimated the magnitudes but with the temporal synchronisation of the ensemble. Seasonal variability across the agro-ecological zones was more sensitive and was an offset for the declining productivities in the primaeval forests of India. The monsoon season contributed to the interannual variability of India. Higher uncertainty in productivities was observed in the high greening areas, whereas it contradicted NBP by reflecting a stable trend. Our results underscore the nature of C variability in the terrestrial ecosystems of India; and, they indicate that C release has reacted stronger than the C uptake, which was substantially inferred from NEE across the ecological zones.