Michelle Frazer

and 1 more

This paper examines the physical controls of extratropical humidity and clouds by isolating the effects of cloud physics factors in an idealized model. The Held-Suarez dynamical core is used with the addition of passive water vapor and cloud tracers, allowing cloud processes to be explored cleanly. Separate saturation adjustment and full cloud scheme controls are used to consider the strength of advection-condensation theory. Three sets of perturbations to the cloud scheme are designed to test the model’s sensitivity to the physics of condensation, sedimentation, and precipitation formation. The condensation and sedimentation perturbations isolate two key differences between the control cases. First, the sub-grid-scale relative humidity distribution assumed for the cloud macrophysics influences the location and magnitude of the extratropical cloud maxima which interrupt the isentropic transport of moisture to the polar troposphere. Second, within the model’s explicit treatment of cloud microphysics, re-evaporation of hydrometeors moistens and increases clouds in the lower troposphere. In contrast, microphysical processes of precipitation formation (specifically, the ratio of accretion to autoconversion) have negligible effects on humidity, cloudiness, and precipitation apart from the strength of the large-scale condensation and formation cycle. Additionally, counterintuitive relationships—such as cloud condensate and cloud fraction responding in opposing directions—emphasize the need for careful dissection of physical mechanisms. In keeping with advection-condensation theory, circulation sets the patterns of humidity, clouds, and precipitation to first order, with factors explored herein providing secondary controls. The results substantiate the utility of such idealized modeling and highlight key cloud processes to constrain.

Michelle Frazer

and 1 more

A negative shortwave cloud feedback associated with higher extratropical liquid water content in mixed-phase clouds is a common feature of global warming simulations, and multiple mechanisms have been hypothesized. A set of process-level experiments performed with an idealized global climate model (a dynamical core with passive water and cloud tracers and full Rotstayn-Klein single-moment microphysics) show that the common picture of the liquid water path (LWP) feedback in mixed-phase clouds being controlled by the amount of ice susceptible to phase change is not robust. Dynamic condensate processes—rather than static phase partitioning—directly change with warming, with varied impacts on liquid and ice amounts. Here, three principal mechanisms are responsible for the LWP response, namely higher adiabatic cloud water content, weaker liquid-to-ice conversion through the Bergeron-Findeisen process, and faster melting of ice and snow to rain. Only melting is accompanied by a substantial loss of ice, while the adiabatic cloud water content increase gives rise to a net increase in ice water path (IWP) such that total cloud water also increases without an accompanying decrease in precipitation efficiency. Perturbed parameter experiments with a wide range of climatological LWP and IWP demonstrate a strong dependence of the LWP feedback on the climatological LWP and independence from the climatological IWP and supercooled liquid fraction. This idealized setup allows for a clean isolation of mechanisms and paints a more nuanced picture of the extratropical mixed-phase cloud water feedback than simple phase change.