Daisuke Takasuka

and 12 more

Toward the achievement of reliable global kilometer-scale (k-scale) climate simulations, we improve the Nonhydrostatic ICosaherdral Atmospheric Model (NICAM) by focusing on moist physical processes. A goal of the model improvement is to establish a configuration that can simulate realistic fields seamlessly from the daily-scale variability to the climatological statistics. Referring to the two representative configurations of the present NICAM, of which each has been used for climate-scale and sub-seasonal-scale experiments, we try to find the appropriate partitioning of fast/local and slow/global-scale circulations. In a series of sensitivity experiments at 14-km horizontal mesh, (1) the tuning of terminal velocities of rain, snow, and cloud ice, (2) the implementation of turbulent diffusion by the Leonard term, and (3) enhanced vertical resolution are tested. These tests yield reasonable convection triggering and convection-induced tropospheric moistening, and result in better performance than in previous NICAM climate simulations. In the mean state, double Intertropical Convergence Zone bias disappears, and the zonal contrast of equatorial precipitation, top-of-atmosphere radiation balance, vertical temperature profile, and position/strength of subtropical jet are dramatically better reproduced. Variability such as equatorial waves and the Madden–Julian oscillation (MJO) is spontaneously realized with appropriate spectral power balance, and the Asian summer monsoon, boreal-summer MJO, and tropical cyclone (TC) activities are more realistically simulated especially around the western Pacific. Meanwhile, biases still exist in the representation of low-cloud fraction, TC intensity, and precipitation diurnal cycle, suggesting that both finer spatial resolutions and the further model development are warranted.

Shingo Watanabe

and 3 more

We used observations and model simulation to examine the atmospheric pulses that dominate the far field in the hours after the January 2022 Tonga eruption. We analyzed radiance observations taken from the Himawari-8 geostationary satellite and showed that both a Lamb wave front with the expected horizontal phase speed ~315 m-s-1 and a distinct front with phase speed ~245 m-s-1 can be detected. The slower phase speed is consistent with that expected for the global internal resonant mode that had been proposed by Pekeris in 1937 and in other idealized theoretical studies over the past century, but which had never been detected in the atmosphere. A simulation of the eruption aftermath was performed with a high resolution atmospheric general circulation model. A hot anomaly over the volcano location was introduced instantaneously to the model fields and the model was integrated for another 12 hours. This produced a simulated wave pulse that, in the far field, agreed reasonably well with barograph observations of the Lamb wave. The model results also showed the presence of the slower pulse and that this disturbance had a vertical structure with a 180o phase shift in the stratosphere, in agreement with the theoretical prediction for the internal mode. An implication of this result is that the continuously ringing Lamb wave global normal modes that have been seen in analysis of long observational records ought to have lower frequency internal Pekeris mode counterparts, a prediction that we confirm though analysis of 57 years of hourly global reanalysis data.