Pablo Lara

and 3 more

We introduce the Ensemble Earthquake Early Warning System (E3WS), a set of Machine Learning algorithms designed to detect, locate and estimate the magnitude of an earthquake using 3 seconds of P waves recorded by a single station. The system is made of 6 Ensemble Machine Learning algorithms trained on attributes computed from ground acceleration time series in the temporal, spectral and cepstral domains. The training set comprises datasets from Peru, Chile, Japan, and the STEAD global dataset. E3WS consists of three sequential stages: detection, P-phase picking and source characterization. The latter involves magnitude, epicentral distance, depth and back-azimuth estimation. E3WS achieves an overall success rate in the discrimination between earthquakes and noise of 99.9%, with no false positive (noise mis-classified as earthquakes) and very few false negatives (earthquakes mis-classified as noise). All false negatives correspond to M ≤ 4.3 earthquakes, which are unlikely to cause any damage. For P-phase picking, the Mean Absolute Error is 0.14 s, small enough for earthquake early warning purposes. For source characterization, the E3WS estimates are virtually unbiased, have better accuracy for magnitude estimation than existing single-station algorithms, and slightly better accuracy for earthquake location. By updating estimates every second, the approach gives time-dependent magnitude estimates that follow the earthquake source time function. E3WS gives faster estimates than present alert systems relying on multiple stations, providing additional valuable seconds for potential protective actions.

Céline Hourcade

and 2 more

State-of-the-art earthquake early warning systems use the early records of seismic waves to estimate the magnitude and location of the seismic source before the shaking and the tsunami strike. Because of the inherent properties of early seismic records, those systems systematically underestimate the magnitude of large events, which results in catastrophic underestimation of the subsequent tsunamis. Prompt elastogravity signals (PEGS) are low-amplitude, light-speed signals emitted by earthquakes, which are highly sensitive to both their magnitude and focal mechanism. Detected before traditional seismic waves, PEGS have the potential to produce unsaturated magnitude estimates faster than state-of-the-art systems. Accurate instantaneous tracking of large earthquake magnitude using PEGS has been proven possible through the use of a Convolutional Neural Network (CNN). However, the CNN architecture is sub-optimal as it does not allow to capture the geometry of the problem. To address this limitation, we design PEGSGraph, a novel deep learning model relying on a Graph Neural Network (GNN) architecture. PEGSGraph accurately estimates the magnitude of synthetic earthquakes down to Mw 7.6-7.7 and determines their focal mechanisms (thrust, strike-slip or normal faulting) within 70 seconds of the event’s onset, offering crucial information for predicting potential tsunami wave amplitudes. Our comparative analysis on Alaska and Western Canada data shows that the GNN outperforms the CNN, especially on test samples with low signal-to-noise ratios, providing more reliable rapid magnitude estimates and enhancing tsunami warning reliability.