Qing Sun

and 22 more

Nitrous oxide (N2O) is a greenhouse gas and an ozone-depleting agent with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at the air sampling sites: Alert, Barrow, Ragged Point, Samoa, Ascension Island, and Cape Grim for the modern and preindustrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but, seasonal peak-to-peak amplitudes differ severalfold across models. After transport, the seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21-52% of median) for land, 0.14 to 0.25 ppb (19-42%) for ocean, and 0.13 to 0.76 ppb (26-52%) for combined flux contributions. The observed range is 0.53 to 1.08 ppb. The stratospheric contributions to aN2O, inferred by the difference between surface-troposphere model and observations, show 36-126% larger amplitudes and minima delayed by ~1 month compared to Northern Hemisphere site observations. Our results demonstrate an increasing importance of land fluxes for aN2O seasonality, with land fluxes and their seasonal amplitude increasing since the preindustrial era and are projected to grow under anthropogenic activities. In situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting surface N2O sources under ongoing global warming.

Juno C. Hsu

and 1 more

In calculating solar radiation, climate models make many simplifications, in part to reduce computational cost and enable climate modeling, and in part from lack of understanding of critical atmospheric information. Whether known errors or unknown errors, the community’s concern is how these could impact the modeled climate. The simplifications are well known and most have published studies evaluating them, but with individual studies it is difficult to compare. Here we collect a wide range of such simplifications in either radiative transfer modeling or atmospheric conditions and assess potential errors within a consistent framework on climate-relevant scales. We build benchmarking capability around a solar heating code (Solar-J) that doubles as a photolysis code for chemistry and can be readily adapted to consider other errors and uncertainties. The broad classes here include: use of broad wavelength bands to integrate over spectral features; scattering approximations that alter phase function and optical depths for clouds and gases; uncertainty in ice-cloud optics; treatment of fractional cloud cover including overlap; and variability of ocean surface albedo. We geographically map the errors in W m-2 using a full climate re-creation for January 2015 from a weather forecasting model. For many approximations assessed here, mean errors are ~2 W m-2 with greater latitudinal biases and are likely to affect a model’s ability to match the current climate state. Combining this work with previous studies, we make priority recommendations for fixing these simplifications based on both the magnitude of error and the ease or computational cost of the fix.

Jean-Christophe Golaz

and 70 more

This work documents version two of the Department of Energy’s Energy Exascale Earth System Model (E3SM). E3SM version 2 (E3SMv2) is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima (DECK) simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate is generally realistic, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Programme (WCRP) assessment. However, E3SMv2 significantly underestimates the global mean surface temperature in the second half of the historical record. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.