Jacob A. Wessel

and 5 more

Global climate goals require a transition to a deeply decarbonized energy system. Meeting the objectives of the Paris Agreement through countries’ Nationally Determined Contributions and Long-Term Strategies represents a complex problem with consequences across multiple systems shrouded by deep uncertainty. Robust, large-ensemble methods and analyses mapping a wide range of possible future states of the world are needed to help policymakers design effective strategies to meet emissions reduction goals. This study contributes a scenario discovery analysis applied to a large ensemble of 5,760 model realizations generated using the Global Change Analysis Model. Eleven energy-related uncertainties are systematically varied, representing national mitigation pledges, institutional factors, and techno-economic parameters, among others. The resulting ensemble maps how uncertainties impact common energy system metrics used to characterize national and global pathways toward deep decarbonization. Results show globally consistent but regionally variable energy transitions as measured by multiple metrics, including electricity costs and stranded assets. Larger economies and developing regions experience more severe economic outcomes across a broad sampling of uncertainty. The scale of CO2 removal globally determines how much the energy system can continue to emit, but the relative role of different CO2 removal options in meeting decarbonization goals varies across regions. Previous studies characterizing uncertainty have typically focused on a few scenarios, and other large-ensemble work has not (to our knowledge) combined this framework with national emissions pledges or institutional factors. Our results underscore the value of large-ensemble scenario discovery for decision support as countries begin to design strategies to meet their goals.
Stochastic Watershed Models (SWMs) are emerging tools in hydrologic modeling used to propagate uncertainty into model predictions by adding samples of model error to deterministic simulations. One of the most promising uses of SWMs is uncertainty propagation for hydrologic simulations under climate change. However, a core challenge with this approach is that the predictive uncertainty inferred from hydrologic model errors in the historical record may not correctly characterize the error distribution under future climate. For example, the frequency of physical processes (e.g., snow accumulation and melt, droughts and hydrologic recessions) may change under climate change, and so too may the frequency of errors associated with those processes. In this work, we explore for the first time non-stationarity in hydrologic model errors under climate change in an idealized experimental design. We fit one hydrologic model to historical observations, and then fit a second model to the simulations of the first, treating the first model as the true hydrologic system. We then force both models with climate change impacted meteorology and investigate changes to the error distribution between the models in historical and future periods. We develop a hybrid machine learning method that maps model input and state variables to predictive errors, allowing for non-stationary error distributions based on changes in the frequency of internal state variables. We find that this procedure provides an internally consistent methodology to overcome stationarity assumptions in error modeling and offers an important path forward in developing stochastic hydrologic simulations under climate change.

Vivek Srikrishnan

and 10 more

Xinyuan Huang

and 4 more

Flannery Dolan

and 6 more

Land scarcity is increasing over time, driven by complex multi-sector dynamics. The impacts of land scarcity on the economy and environment are multi-faceted and regional, so any action to convert land will contain inherent tradeoffs. These impacts are complicated by the deeply uncertain evolution of the various sectors influencing land scarcity. A need therefore exists to provide multi-metric and multi-sector assessments that are robust to myriad uncertainties. Land conservation effectively limits the supply of productive land, while biofuel consumption increases the demand and competition for that land, and how these dynamics individually and jointly propagate to economic and environmental impacts is an important open question. To address this, we adopt the Global Change Analysis Model (GCAM) that has representations of various important sectors including the climate, land-use economy, energy systems, agriculture, and water resources. Scenarios of increased land demand (from biofuels) and decreased land supply (from conservation) under various socioeconomic pathways drawn from the SSPs were simulated using GCAM. We find that while biofuel consumption and land conservation reduce carbon emissions, this comes at the cost of higher food prices, reduced crop production, and increased water withdrawals. Additionally, some regions experience these tradeoffs more severely than others and are more heavily impacted from the same biofuel mandate or by an additional percent of protected land. These and other findings highlight the importance of multi-sector modeling frameworks that capture many cross-sector linkages, and acknowledge the important uncertainties confronting the human-Earth system when making any analysis of the land scarcity impacts.