David A. Carozza

and 3 more

Tropical cyclones (TCs) are among the most destructive natural hazards and yet, quantifying their financial impacts remains a significant methodological challenge. It is therefore of high societal value to synthetically simulate TC tracks and winds to assess potential impacts along with their probability distributions for e.g., land use planning and financial risk management. A common approach to generate TC tracks is to apply storm detection methodologies to climate model output, but such an approach is sensitive to the method and parameterization used and tends to underestimate intense TCs. We present a global TC model that melds statistical modeling, to capture historical risk features, with a climate model large ensemble, to generate large samples of physically-coherent TC seasons. Integrating statistical and physical methods, the model is probabilistic and consistent with the physics of how TCs develop. The model includes frequency and location of cyclogenesis, full trajectories with maximum sustained winds and the entire wind structure along each track for the six typical cyclogenesis basins from IBTrACS. Being an important driver of TCs globally, we also integrate ENSO effects in key components of the model. The global TC model thus belongs to a recent strand of literature that combines probabilistic and physical approaches to TC track generation. As an application of the model, we show global risk maps for direct and indirect hits expressed in terms of return periods. The global TC model can be of interest to climate and environmental scientists, economists and financial risk managers.

David A. Carozza

and 1 more

Large scale flood risk analyses are fundamental to many applications requiring national or international overviews of flood risk. While large-scale climate patterns such as teleconnections and climate change become important at this scale, it remains a challenge to represent the local hydrological cycle over various watersheds in a manner that is physically consistent with climate. As a result, global models tend to suffer from a lack of available scenarios and flexibility that are key for planners, relief organizations, regulators, and the financial services industry to analyze the socioeconomic, demographic, and climatic factors affecting exposure. Here we introduce a data-driven, global, fast, flexible, and climate-consistent flood risk modeling framework for applications that do not necessarily require high-resolution flood mapping. We first use statistical and machine learning methods to examine the relationship between historical (from the Dartmouth Flood Observatory) flood occurrence and impact, and climatic, watershed, and socioeconomic factors at over 4700 watersheds globally. Using bias-corrected output from the NCAR CESM Large Ensemble from 1980 to 2020, and the fitted statistical relationships, we simulate one million years of events worldwide along with the population displaced. We discuss potential applications of the model and present global flood hazard and risk maps. The main value of this global flood model lies in its ability to quickly simulate realistic flood events at a resolution that is useful for large-scale socioeconomic and financial planning, yet we expect it to be useful to climate and natural hazard scientists who are interested in socioeconomic impacts of climate.