Haruka Okui

and 4 more

Atmospheric gravity waves (GWs) play a key role in determining the thermodynamical structure of the Earth’s middle atmosphere. Despite the small spatial and temporal scales of these waves, a few high-top general circulation models (GCMs) that can resolve them explicitly have recently become available. This study compares global GW characteristics simulated in one such GCM, the Japanese Atmospheric GCM for Upper-Atmosphere Research (JAGUAR), with those derived from three-dimensional (3-D) temperatures observed by the Atmospheric Infrared Sounder (AIRS) aboard NASA’s Aqua satellite. The target period is from 15 December 2018 to 8 January 2019, including the onset of a major sudden stratospheric warming (SSW). The 3-D Stockwell transform method is used for GW spectral analysis. The amplitudes and momentum fluxes of GWs in JAGUAR are generally in good quantitative agreement with those in the AIRS observations in both magnitude and distribution. As the SSW event progressed, the GW amplitudes and eastward momentum flux increased at low latitudes in the summer hemisphere in both the model and observation datasets. Case studies demonstrate that the model is able to reproduce comparable wave events to those in the AIRS observations with some differences, especially noticeable at low latitudes in the summer hemisphere. Through a comparison between the model results with and without the AIRS observational filter applied, it is suggested that the amplitudes of GWs near the exits and entrances of eastward jet streaks are underestimated in AIRS observations.
The solar tides of the mesosphere and lower thermosphere (MLT) show great variability on timescales of days to years, with significant variability at interannual timescales. However, the nature and causes of this variability remain poorly understood. Here, we present measurements made over the interval 2005 to 2020 of the interannual variability of the 12-hour tide as measured at heights of 80 to 100 km by a meteor radar over Rothera (68S, 68W). We use a linear regression analysis to investigate correlations between the 12-hour tidal amplitudes and several climate indices, specifically the solar cycle (as measured by F10.7 solar flux), El Niño Southern Oscillation (ENSO), the Quasi-Biennial Oscillation (QBO) at 10 hPa and 30 hPa and the Southern Annular Mode (SAM). Our observations reveal that the 12-hour tide has a large amplitude and a clearly defined seasonal cycle with monthly mean values as large as 35 ms-1. We observe substantial interannual variability, with monthly mean 12-hour tidal amplitudes at 95 km exhibiting a two standard-deviation range (2σ) in spring of 13.4 ms-1, 11.2 ms-1in summer, 18.6 ms-1 in autumn and 7.0 ms-1 in winter. We find that F10.7, QBO10, QBO30 and SAM all have significant correlations to the 12-hour tidal amplitudes at the 95% level, with a linear trend also present. Whereas we detect very minimal correlation with ENSO. These results suggest that variations in F10.7, the QBO and SAM may contribute significantly to the interannual variability of 12-hour tidal amplitudes in the Antarctic MLT.