loading page

Soil infiltration characteristics and pore distribution under freezing-thawing conditions
  • +5
  • Ruiqi Jiang,
  • Tianxiao Li,
  • Dong Liu,
  • Qiang Fu,
  • Renjie Hou,
  • Qinglin Li,
  • Song Cui,
  • Mo Li
Ruiqi Jiang
Northeast Agricultural University
Author Profile
Tianxiao Li
Northeast Agricultural University
Author Profile
Dong Liu
Northeast Agricultural University

Corresponding Author:[email protected]

Author Profile
Qiang Fu
Northeast Agricultural University
Author Profile
Renjie Hou
Northeast Agricultural University
Author Profile
Qinglin Li
Northeast Agricultural University
Author Profile
Song Cui
Northeast Agricultural University
Author Profile
Mo Li
Northeast Agricultural University
Author Profile

Abstract

Frozen soil infiltration widely occurs in hydrological processes such as seasonal soil freezing and thawing, snowmelt infiltration, and runoff. Accurate measurement and simulation of parameters related to frozen soil infiltration processes are highly important for agricultural water management, environmental issues and engineering problems in cold regions. Temperature changes cause soil pore size distribution variations and consequently dynamic infiltration capacity changes during different freeze-thaw periods. To better understand these complex processes and to reveal the freeze-thaw action effects on soil pore distribution and infiltration capacity, selected black and meadow soils and chernozem, which account for the largest arable land area in Heilongjiang Province, China. Laboratory tests of soils at different temperatures were conducted using a tension infiltrometer and ethylene glycol aqueous solution. The stable infiltration rate, hydraulic conductivity were measured, and the soil pore distribution was calculated. The results indicated that for the different soil types, macropores, which constituted approximately 0.1% to 0.2% of the soil volume under unfrozen conditions, contributed approximately 50% of the saturated flow, and after soil freezing, the soil macropore proportion decreased to 0.05% to 0.1%, while their saturated flow proportion decreased to approximately 30%. Soil moisture froze into ice crystals inside relatively large pores, resulting in numerous smaller-sized pores, which reduced the number of macropores while increasing the number of smaller-sized mesopores, so that the frozen soil infiltration capacity was no longer solely dependent on the macropores. After the ice crystals had melted, more pores were formed within the soil, enhancing the soil permeability.
02 May 2021Published in The Cryosphere volume 15 issue 4 on pages 2133-2146. 10.5194/tc-15-2133-2021