Daisuke Takasuka

and 12 more

Toward the achievement of reliable global kilometer-scale (k-scale) climate simulations, we improve the Nonhydrostatic ICosaherdral Atmospheric Model (NICAM) by focusing on moist physical processes. A goal of the model improvement is to establish a configuration that can simulate realistic fields seamlessly from the daily-scale variability to the climatological statistics. Referring to the two representative configurations of the present NICAM, of which each has been used for climate-scale and sub-seasonal-scale experiments, we try to find the appropriate partitioning of fast/local and slow/global-scale circulations. In a series of sensitivity experiments at 14-km horizontal mesh, (1) the tuning of terminal velocities of rain, snow, and cloud ice, (2) the implementation of turbulent diffusion by the Leonard term, and (3) enhanced vertical resolution are tested. These tests yield reasonable convection triggering and convection-induced tropospheric moistening, and result in better performance than in previous NICAM climate simulations. In the mean state, double Intertropical Convergence Zone bias disappears, and the zonal contrast of equatorial precipitation, top-of-atmosphere radiation balance, vertical temperature profile, and position/strength of subtropical jet are dramatically better reproduced. Variability such as equatorial waves and the Madden–Julian oscillation (MJO) is spontaneously realized with appropriate spectral power balance, and the Asian summer monsoon, boreal-summer MJO, and tropical cyclone (TC) activities are more realistically simulated especially around the western Pacific. Meanwhile, biases still exist in the representation of low-cloud fraction, TC intensity, and precipitation diurnal cycle, suggesting that both finer spatial resolutions and the further model development are warranted.

Ning Zhao

and 1 more

The importance of air-sea coupling in the simulation and prediction of the Madden-Julian Oscillation (MJO) has been well established. However, it remains unclear how air-sea coupling modulates the convection and related oceanic features on the subdaily scale. Based on a regional cloud-resolving coupled model, we evaluated the impact of the air-sea coupling on the convection during the active phase of the MJO by varying the coupling frequency. The model successfully reproduced the atmospheric and oceanic variations observed by satellite and measurements but with some quantitative biases. According to the sensitivity experiments, we found that stronger convection was mainly caused by the higher sea surface temperatures (SSTs) generated in highly coupled experiments, especially when the coupling frequency was 1 hour or shorter. A lower coupling frequency would generate the phase lags in the diurnal cycle of SST and related turbulent heat fluxes. Our analyses further demonstrated that the phase-lagged diurnal cycle of SST suppressed deep convection through a decrease in daytime moistening in the lower troposphere. Meanwhile, in the upper ocean, the high-frequency air-sea coupling helped maintain the shallower mixed and isothermal layers by diurnal heating and cooling at the sea surface, which led to a higher mean SST. In contrast, the barely coupled experiments underestimated SST and therefore convective activities. Overall, our results demonstrated that high-frequency air-sea coupling (1 hour or shorter) could improve the reproducibility of the intensity and temporal variation in both diurnal convection and upper ocean processes.