Reef-building corals provide seasonally resolved records of past climate variability from the ocean via variations in their oxygen isotope composition (δ18O). However, a variety of non-climatic factors can influence coral δ18O including processes associated with coral biomineralization and post-depositional alteration of the coral skeleton, which add uncertainty to coral based paleoclimate reconstructions. These uncertainties are especially large in mean climate reconstructions developed from coral δ18O values due to the large variability that exists in mean skeletal δ18O signatures. We present a novel framework to minimize this uncertainty in mean coral δ18O records based on a regression model that uses four commonly measured properties in coral skeletons and associated coral δ18O records. We test the ability of the model to reduce noise in a Holocene climate reconstruction comprised of 37 coral δ18O records from Kiritimati in the equatorial Pacific. Up to 43% of the variance in the detrended Holocene dataset is accounted for by a combination of four predictors: (1) mm-scale variability in a coral δ18O record, (2) the physical extent of diagenetic alteration, (3) coral extension rate, and (4) the mean coral δ13C value. Once these non-climatic artifacts are removed from the reconstruction, the weighted variance of the Holocene dataset is reduced by 46% and the uncertainty in the trend of coral δ18O over time is reduced by 26%. These results have important implications for the climate interpretation of this Holocene data set. This framework has the potential to improve other paleoclimate records based on ensembles of coral δ18O records.

Jane W. Baldwin

and 3 more

General Circulation Models (GCMs) exhibit substantial biases in their simulation of tropical climate. One particularly problematic bias exists in GCMs’ simulation of the tropical rainband known as the Intertropical Convergence Zone (ITCZ). Much of the precipitation on Earth falls within the ITCZ, which plays a key role in setting Earth’s temperature by affecting global energy transports, and partially dictates dynamics of the largest interannual mode of climate variability: the El Nino-Southern Oscillation (ENSO). Most GCMs fail to simulate the mean state of the ITCZ correctly, often exhibiting a “double ITCZ bias”, with rainbands both north and south rather than just north of the equator. These tropical mean state biases limit confidence in climate models’ simulation of projected future and paleoclimate states, and reduce the utility of these models for understanding present climate dynamics. Adjusting GCM parameterizations of cloud processes and atmospheric convection can reduce tropical biases, as can artificially correcting sea surface temperatures (SSTs) through modifications to air-sea fluxes (i.e. “flux adjustment”). Here we argue that a significant portion of these rainfall and circulation biases are rooted in orographic height being biased low due to assumptions made in fitting observed orography onto GCM grids. We demonstrate that making different, and physically defensible, assumptions that raise the orographic height significantly improves model simulation of climatological features such as the ITCZ and North American rainfall as well as the simulation of ENSO. These findings suggest a simple, physically-based, and computationally inexpensive method that can improve climate models and projections of future climate.