Model simulations of past climates are increasingly found to compare well with proxy data at a global scale, but regional discrepancies remain. A persistent issue in modeling past greenhouse climates has been the temperature difference between equatorial and (sub-)polar regions, which is typically much larger in simulations than proxy data suggest. Particularly in the Eocene, multiple temperature proxies suggest extreme warmth in the southwest Pacific Ocean, where model simulations consistently suggest temperate conditions. Here we present new global ocean model simulations at 0.1° horizontal resolution for the middle-late Eocene. The eddies in the high-resolution model affect poleward heat transport and local time-mean flow in critical regions compared to the non-eddying flow in the standard low-resolution simulations. As a result, the high-resolution simulations produce higher surface temperatures near Antarctica and lower surface temperatures near the equator compared to the low-resolution simulations, leading to better correspondence with proxy reconstructions. Crucially, the high-resolution simulations are also much more consistent with biogeographic patterns in endemic-Antarctic and low-latitude-derived plankton, and thus resolve the long-standing discrepancy of warm subpolar ocean temperatures and isolating polar gyre circulation. The results imply that strongly eddying model simulations are required to reconcile discrepancies between regional proxy data and models, and demonstrate the importance of accurate regional paleobathymetry for proxy-model comparisons.

Ilja Japhir Kocken

and 5 more

The Eocene–Oligocene transition (~34 Ma), is marked by the rapid development of a semi-permanent Antarctic ice-sheet, as indicated by ice-rafted debris. Proxy reconstructions indicate a drop in atmospheric CO₂ and global cooling. How these changes affected sea surface temperatures in the North Atlantic and ocean water stratification remains poorly constrained. In this study, we apply clumped-isotope thermometry to well-preserved planktic foraminifera, that are associated with mixed-layer and thermocline dwelling depths from the drift sediments at IODP Site 1411, Newfoundland, across four intervals bracketing the EOT. The mixed-layer dwelling foraminifera record a cooling of 2.2 ± 2.4 °C (mean ± 95% CI) across the EOT. While the cooling amplitude is similar to previous SST reconstructions, absolute temperatures (Eocene 20.0 ± 2.7 °C, Oligocene 18.0 ± 2.1 °C) appear colder than what is expected for this location based on previously reconstructed SSTs for the northernmost Atlantic. We discuss seasonal bias, recording depth, and appropriate consideration of paleolatitudes, all of which complicate the comparison between SST reconstructions and model output. Thermocline dwelling foraminifera record a larger cooling across the EOT (Eocene 19.0 ± 3.4 °C, Oligocene 14.0 ± 3.1 °C, cooling of 5.2 ± 3.2 °C), than foraminifera from the mixed layer, consistent with an increase in ocean stratification which may be related to the onset or intensification of the Atlantic meridional overturning circulation.