Benjamin Gaubert

and 29 more

Tropical lands play an important role in the global carbon cycle yet their contribution remains uncertain owing to sparse observations. Satellite observations of atmospheric carbon dioxide (CO2) have greatly increased spatial coverage over tropical regions, providing the potential for improved estimates of terrestrial fluxes. Despite this advancement, the spread among satellite-based and in-situ atmospheric CO2 flux inversions over northern tropical Africa (NTA), spanning 0-24◦N, remains large. Satellite-based estimates of an annual source of 0.8-1.45 PgC yr−1 challenge our understanding of tropical and global carbon cycling. Here, we compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic Ocean by the NASA Atmospheric Tomography (ATom) mission during four seasons. We develop emergent constraints on tropical African CO2 fluxes using flux-concentration relationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr−1 (mean and standard deviation) for NTA, 2016-2018. The satellite-based flux bias suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux estimates relative to the in situ observing network at other times of year, indicating stronger uptake in NTA during the wet season than the in-situ inversion estimates.

Nikolay Balashov

and 7 more

Climate extremes such as droughts, floods, heatwaves, frosts, and windstorms add considerable variability to the global year-to-year increase in atmospheric CO2 through their influence on terrestrial ecosystems. While the impact of droughts on terrestrial ecosystems has received considerable attention, the response to flooding events of varying intensity is poorly understood. To improve upon such understanding, the impact of the 2019 US flooding on regional CO2 vegetation fluxes is examined in the context of 2017-2018 years when such precipitation anomalies are not observed. CO2 is simulated with NASA’s Global Earth Observing System (GEOS) combined with the Low-order Flux Inversion (LoFI), where fluxes of CO2 are estimated using a suite of remote sensing measurements including greenness, night lights, and fire radiative power and bias corrected based on in situ observations. Net ecosystem exchange CO2 tracer is separated into the three regions covering the Midwest, South, and Eastern Texas and adjusted to match CO2 observations from towers located in Iowa, Mississippi, and Texas. Results indicate that for the Midwestern region consisting primarily of corn and soybeans crops, flooding contributes to a 15-25% reduction of net carbon uptake in May-September of 2019 in comparison to 2017 and 2018. These results are supported by independent reports of changes in agricultural activity. For the Southern region, comprised mainly of non-crop vegetation, net carbon uptake is enhanced in May-September of 2019 by about 10-20% in comparison to 2017 and 2018. These outcomes show the heterogeneity in effects that excess wetness can bring to diverse ecosystems.

Krzysztof Wargan

and 6 more

MERRA-2 Stratospheric Composition Reanalysis of Aura Microwave Limb Sounder (M2-SCREAM) is a new reanalysis of stratospheric ozone, water vapor, hydrogen chloride (HCl), nitric acid (HNO3) and nitrous oxide (N2O) between 2004 and the present (with a latency of several months). The assimilated fields are provided at a 50-km horizontal resolution and at a three-hourly frequency. M2-SCREAM assimilates version 4.2 Microwave Limb Sounder (MLS) profiles of the five constituents alongside total ozone column from the Ozone Monitoring Instrument. Dynamics and tropospheric water vapor are constrained by the MERRA-2 reanalysis. The assimilated species are in excellent agreement with the MLS observations, except for HNO3 in polar night, where data are not assimilated. Comparisons against independent observations show that the reanalysis realistically captures the spatial and temporal variability of all the assimilated constituents. In particular, the standard deviations of the differences between M2-SCREAM and constituent mixing ratio data from The Atmospheric Chemistry Experiment Fourier Transform Spectrometer are much smaller than the standard deviations of the measured constituents. Evaluation of the reanalysis against aircraft data and balloon-borne frost point hygrometers indicates a faithful representation of small-scale structures in the assimilated water vapor, HNO3 and ozone fields near the tropopause. Comparisons with independent observations and a process-based analysis of the consistency of the assimilated constituent fields with the MERRA-2 dynamics and with large-scale stratospheric processes demonstrate the utility of M2-SCREAM for scientific studies of chemical and transport variability on time scales ranging from hours to decades. Analysis uncertainties and guidelines for data usage are provided.

Li Zhang

and 15 more

The ability of current global models to simulate the transport of CO2 by mid-latitude, synoptic-scale weather systems (i.e. CO2 weather) is important for inverse estimates of regional and global carbon budgets but remains unclear without comparisons to targeted measurements. Here, we evaluate ten models that participated in the Orbiting Carbon Observatory-2 model intercomparison project (OCO-2 MIP version 9) with intensive aircraft measurements collected from the Atmospheric Carbon Transport (ACT)-America mission. We quantify model-data differences in the spatial variability of CO2 mole fractions, mean winds, and boundary layer depths in 27 mid-latitude cyclones spanning four seasons over the central and eastern United States. We find that the OCO-2 MIP models are able to simulate observed CO2 frontal differences with varying degrees of success in summer and spring, and most underestimate frontal differences in winter and autumn. The models may underestimate the observed boundary layer-to-free troposphere CO2 differences in spring and autumn due to model errors in boundary layer height. Attribution of the causes of model biases in other seasons remains elusive. Transport errors, prior fluxes, and/or inversion algorithms appear to be the primary cause of these biases since model performance is not highly sensitive to the CO2 data used in the inversion. The metrics presented here provide new benchmarks regarding the ability of atmospheric inversion systems to reproduce the CO2 structure of mid-latitude weather systems. Controlled experiments are needed to link these metrics more directly to the accuracy of regional or global flux estimates.

Kenneth Davis

and 29 more

The Atmospheric Carbon and Transport (ACT) – America NASA Earth Venture Suborbital Mission set out to improve regional atmospheric greenhouse gas (GHG) inversions by exploring the intersection of the strong GHG fluxes and vigorous atmospheric transport that occurs within the midlatitudes. Two research aircraft instrumented with remote and in situ sensors to measure GHG mole fractions, associated trace gases, and atmospheric state variables collected 1140.7 flight hours of research data, distributed across 305 individual aircraft sorties, coordinated within 121 research flight days, and spanning five, six-week seasonal flight campaigns in the central and eastern United States. Flights sampled 31 synoptic sequences, including fair weather and frontal conditions, at altitudes ranging from the atmospheric boundary layer to the upper free troposphere. The observations were complemented with global and regional GHG flux and transport model ensembles. We found that midlatitude weather systems contain large spatial gradients in GHG mole fractions, in patterns that were consistent as a function of season and altitude. We attribute these patterns to a combination of regional terrestrial fluxes and inflow from the continental boundaries. These observations, when segregated according to altitude and air mass, provide a variety of quantitative insights into the realism of regional CO2 and CH4 fluxes and atmospheric GHG transport realizations. The ACT-America data set and ensemble modeling methods provide benchmarks for the development of atmospheric inversion systems. As global and regional atmospheric inversions incorporate ACT-America’s findings and methods, we anticipate these systems will produce increasingly accurate and precise sub-continental GHG flux estimates.