Denise Hills

and 17 more

This article is composed of three independent commentaries about the state of ICON principles (Goldman et al., 2021a) in Earth and Space Science Informatics (ESSI) and includes discussion on the opportunities and challenges of adopting them. Each commentary focuses on a different topic: (Section 2) Global collaboration, cyberinfrastructure, and data sharing; (Section 3) Machine learning for multiscale modeling; (Section 4) Aerial and satellite remote sensing for advancing Earth system model development by integrating field and ancillary data. ESSI addresses data management practices, computation and analysis, and hardware and software infrastructure. Our role in ICON science therefore involves collaborative work to assess, design, implement, and promote practices and tools that enable effective data management, discovery, integration, and reuse for interdisciplinary work in Earth and space science disciplines. Networks of diverse people with expertise across Earth, space, and data science disciplines are essential for efficient and ethical exchanges of FAIR research products and practices. Our challenge is then to coordinate the development of standards, curation practices, and tools that enable integrating and reusing multiple data types, software, multi-scale models, and machine learning approaches across disciplines in a way that is as open and/or FAIR as ethically possible. This is a major endeavor that could greatly increase the pace and potential of interdisciplinary scientific discovery.

Sushant Mehan

and 14 more

This article comprises three independent commentaries about the state of ICON principles in hydrology and discusses the opportunities and challenges of adopting them. Each commentary focuses on a different perspective as follows: (i) field, experimental, remote sensing, and real-time data research and application (Section 1); (ii) Inclusive, equitable, and accessible science: Involvement, challenges, and support of early career, marginalized racial groups, women, LGBTQ+, and/or disabled researchers (Section 2); and (iii) an ICON perspective on machine learning for multiscale hydrological modeling (Section 3). Hydrologists depend on data monitoring, analyses, and simulations from these diverse scientific disciplines to ensure safe, sufficient, and equal water distribution. These hydrologic data come from but are not limited to primary (in-situ: lab, plots, and field experiments) and secondary sources (ex-situ: remote sensing, UAVs, hydrologic models) that are typically openly available and discoverable. Hydrology-oriented organizations have pushed our community to increase coordination of the protocols for generating data and sharing model platforms. In addition, networking at all levels has emerged with an invigorated effort to activate community science efforts that complement conventional data collection methods. With increasing amounts of data, it has become difficult to decipher various complex hydrologic processes. However, machine learning, a branch of artificial intelligence, provides accurate and faster alternatives to understand different biogeochemical and hydrological processes better. Diversity, equity, and inclusivity are essential in terms of outreach and integration of peoples with historically marginalized identities into this professional discipline and respecting and supporting the local environmental knowledge of water users.

Acharya Bharat Sharma

and 14 more

Hydrologic sciences depend on data monitoring, analyses, and simulations of hydrologic processes to ensure safe, sufficient, and equal water distribution. These hydrologic data come from but are not limited to primary (lab, plot, and field experiments) and secondary sources (remote sensing, UAVs, hydrologic models) that typically follow FAIR Principles (FAIR Principles - GO FAIR (go-fair.org)). Easy availability of FAIR data has become possible because the hydrology-oriented organizations have pushed the community to increase coordination of the protocols for generating data and sharing model platforms. In addition, networking at all levels has emerged with an invigorated effort to activate community science efforts that complement conventional data collection methods. However, it has become difficult to decipher various complex hydrologic processes with increasing data. Machine learning, a branch of artificial intelligence, provides more accurate and faster alternatives to better understand different hydrological processes. The Integrated, Coordinated, Open, Networked (ICONs) framework provides a pathway for water users to include and respect diversity, equity, and inclusivity. In addition, ICONs support the integration of peoples with historically marginalized identities into this professional discipline of water sciences. This article comprises three independent commentaries about the state of ICON principles in hydrology and discusses the opportunities and challenges of adopting them.