Christoph A. Keller

and 15 more

The Goddard Earth Observing System composition forecast (GEOS-CF) system is a high-resolution (0.25 degree) global constituent prediction system from NASA’s Global Modeling and Assimilation Office (GMAO). GEOS-CF offers a new tool for atmospheric chemistry research, with the goal to supplement NASA’s broad range of space-based and in-situ observations and to support flight campaign planning, support of satellite observations, and air quality research. GEOS-CF expands on the GEOS weather and aerosol modeling system by introducing the GEOS-Chem chemistry module to provide analyses and 5-day forecasts of atmospheric constituents including ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and fine particulate matter (PM2.5). The chemistry module integrated in GEOS-CF is identical to the offline GEOS-Chem model and readily benefits from the innovations provided by the GEOS-Chem community. Evaluation of GEOS-CF against satellite, ozonesonde and surface observations show realistic simulated concentrations of O3, NO2, and CO, with normalized mean biases of -0.1 to -0.3, normalized root mean square errors (NRMSE) between 0.1-0.4, and correlations between 0.3-0.8. Comparisons against surface observations highlight the successful representation of air pollutants under a variety of meteorological conditions, yet also highlight current limitations, such as an overprediction of summertime ozone over the Southeast United States. GEOS-CF v1.0 generally overestimates aerosols by 20-50% due to known issues in GEOS-Chem v12.0.1 that have been addressed in later versions. The 5-day hourly forecasts have skill scores comparable to the analysis. Model skills can be improved significantly by applying a bias-correction to the surface model output using a machine-learning approach.

K. Emma Knowland

and 15 more

The NASA Goddard Earth Observing System (GEOS) Composition Forecast (GEOS-CF) provides recent estimates and five-day forecasts of atmospheric composition to the public in near-real time. To do this, the GEOS Earth system model is coupled with the GEOS-Chem tropospheric-stratospheric unified chemistry extension (UCX) to represent composition from the surface to the top of the GEOS atmosphere (0.01 hPa). The GEOS-CF system is described, including updates made to the GEOS-Chem UCX mechanism within GEOS-CF for improved representation of stratospheric chemistry. Comparisons are made against balloon, lidar and satellite observations for stratospheric composition, including measurements of ozone (O3) and important nitrogen and chlorine species related to stratospheric O3 recovery. The GEOS-CF nudges the stratospheric O3 towards the GEOS Forward Processing (GEOS FP) assimilated O3 product; as a result the stratospheric O3 in the GEOS-CF historical estimate agrees well with observations. During abnormal dynamical and chemical environments such as the 2020 polar vortexes, the GEOS-CF O3 forecasts are more realistic than GEOS FP O3 forecasts because of the inclusion of the complex GEOS-Chem UCX chemistry. Overall, the spatial pattern of the GEOS-CF simulated concentrations of stratospheric composition agrees well with satellite observations. However, there are notable biases – such as low NOx and HNO3 in the polar regions and generally low HCl throughout the stratosphere – and future improvements to the chemistry mechanism and emissions are discussed. GEOS-CF is a new tool for the research community and instrument teams observing trace gases in the stratosphere and troposphere, providing near-real-time three-dimensional gridded information on atmospheric composition.