TC Chakraborty

and 5 more

There are large uncertainties in our future projections of climate change at the regional scale, with spatial variabilities not resolved adequately by coarse-grained Earth System Models (ESMs). In this study, we use pseudo global warming simulations driven by end of the century upper end RCP (Representative Concentration Pathway) 8.5 projections from 11 state-of-the-art ESMs to examine changes in summer heat stress extremes using physiologically relevant heat stress metrics (heat index and wet bulb globe temperature) over the Great Lakes Region (GLR). These simulations, generated from a cloud-resolving model, are at a fine spatiotemporal resolution to detect heterogeneities relevant for human heat exposure. These downscaled climate projections are combined with gridded future population estimates to isolate population versus warming contributions to population-adjusted heat stress in this region. Our results show that a significant portion of summer will be dominated by critical outdoor heat stress levels within GLR for this scenario. Additionally, regions with higher heat stress generally have disproportionately higher population densities. Humidity change generates positive feedback on future heat stress, generally amplifying heat stress (by 24.2% to 79.5%) compared to changing air temperature alone, with the degree of control of humidity depending on the heat stress metric used. The uncertainty of the results for future heat stress are quantified based on multiple ESMs and heat stress metrics used in this study. Overall, our study shows the importance of dynamically resolving heat stress at population-relevant scales to get more accurate estimates of future heat risk in the region.
This study develops a surrogate-based method to assess the uncertainty within a convective permitting integrated modeling system of the Great Lakes region, arising from interacting physics parameterizations across the lake, atmosphere, and land surface. Perturbed physics ensembles of the model during the 2018 summer are used to train a neural network surrogate model to predict lake surface temperature (LST) and near-surface air temperature (T2m). Average physics uncertainties are determined to be 1.5°C for LST and T2m over land, and 1.9°C for T2m over lake, but these have significant spatiotemporal variations. We find that atmospheric physics parameterizations are the dominant sources of uncertainty for both LST and T2m, and there is a substantial atmosphere-lake physics interaction component. LST and T2m over the lake are more uncertain in the deeper northern lakes, particularly during the rapid warming phase that occurs in late spring/early summer. The LST uncertainty increases with sensitivity to the lake model’s surface wind stress scheme. T2m over land is more uncertain over forested areas in the north, where it is most sensitive to the land surface model, than the more agricultural land in the south, where it is most sensitive to the atmospheric planetary boundary and surface layer scheme. Uncertainty also increases in the southwest during multiday temperature declines with higher sensitivity to the land surface model. Last, we show that the deduced physics uncertainty of T2m is statistically smaller than a regional warming perturbation exceeding 0.5°C.

Chuxuan Li

and 3 more

Accurate soil moisture and streamflow data are an aspirational need of many hydrologically-relevant fields. Model simulated soil moisture and streamflow hold promise but numerical models require calibration prior to application to ensure sufficient model performance. Manual or automated calibration methods require iterative model runs and hence are computationally expensive. In this study, we leverage the Soil Survey Geographic (SSURGO) database and the probability mapping of SSURGO (POLARIS) to help constrain soil parameter uncertainties in the Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) over a central California domain. After calibration, WRF-Hydro soil moisture exhibits increased correlation coefficients (r), reduced biases, and increased Kling-Gupta Efficiencies (KGEs) across seven in-situ soil moisture observing stations. Compared to four well-established soil moisture datasets including Soil Moisture Active Passive Level 4 data and three Phase 2 North American Land Data Assimilation System land surface models, our POLARIS-calibrated WRF-Hydro produces the highest mean KGE (0.67) across the seven stations. More importantly, WRF-Hydro streamflow fidelity also increases especially in the case where the model domain is set up with an SSURGO-informed total soil thickness. Both the magnitude and timing of peak flow events are better captured, r increases across nine United States Geological Survey stream gages, and the mean Nash-Sutcliffe Efficiency across seven of the nine gages increases from 0.19 in default WRF-Hydro to 0.63 after calibration. Our soil data-informed calibration approach, which is transferable to other spatially-distributed hydrological models, uses open-access data and non-iterative steps to improve model performance and is thus operationally and computationally attractive.

Zhao Yang

and 10 more

Chuxuan Li

and 8 more

In steep wildfire-burned terrains, intense rainfall can produce large volumes of runoff that can trigger highly destructive debris flows. The ability to accurately characterize and forecast debris-flow hazards in burned terrains, however, remains limited. Here, we augment the Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfire debris-flow hazards over a regional domain. We perform hindcast simulations using high-resolution weather radar-derived precipitation and reanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric river triggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California’s famous Highway 1. Compared to the baseline, our burn scar simulation yields dramatic increases in total and peak discharge, and shorter lags between rainfall onset and peak discharge. At Rat Creek, where Highway 1 was destroyed, discharge volume increases eight-fold and peak discharge triples relative to the baseline. For all catchments within the burn scar, we find that the median catchment-area normalized discharge volume increases nine-fold after incorporating burn scar characteristics, while the 95th percentile volume increases 13-fold. Catchments with anomalously high hazard levels correspond well with post-event debris flow observations. Our results demonstrate that WRF-Hydro provides a compelling new physics-based tool to investigate and potentially forecast postfire hydrologic hazards at regional scales.
This study investigates changes and uncertainties to cool-season (November-March) storm tides along the U.S. northeast coast in the 21st century under the high RCP8.5 emission scenario compared to late 20th century. A high-fidelity (50-m coastal resolution) hydrodynamic storm tide model is forced with three dynamically-downscaled regional climate models (RCMs) over three decadal periods (historical, mid-21st century and late-21st century) to project future changes in peak storm tide elevations at coastal counties in the region. While there is no absolute consensus on future changes to storm tides, for any one future decade two out of the three RCMs project an increase at counties along the Hudson River, Delaware River and northern Chesapeake Bay due to more intense cyclones that track inland of these locations leading to favorable surge generating conditions. The same RCMs also project a decrease at counties facing the open ocean in the mid-Atlantic Bight as cyclone densities just offshore of the coastline decrease, particularly by late-century. The larger tidal range in northern areas leads to significant uncertainty due to the arbitrary relationship between the local tidal stage and when a surge event occurs, which affects both the magnitude and sign of the projected changes. This tide-surge timing is less important in the Chesapeake Bay and unimportant in Albemarle Sound and Pamlico Sound. Similar to other recent studies, we highlight that sea level rise is likely to be more critical than storm climatology for future changes to the cool-season coastal flooding potential.