Visweshwaran R

and 2 more

The use of accurate streamflow estimates is widely recognized in the hydrological field. However, due to the model’s structural error, they often yield suboptimal streamflow estimates. Past studies have shown that soil moisture assimilation improves the performance of the hydrological model which often results in enhanced model estimates. Due to this reason, it is widely studied in the hydrological field.  However, the efficiency of the assimilation largely relies on the correct placement of the observation into the model. Ingesting futile observations often results in the degradation of model performance. On the contrary, performing assimilation only at those time steps when the assimilating variable is sensitive to the model output may yield desirable output. Further, it will avoid the assimilation of spurious observations. In this view, this study proposes a new approach where sensitivity-based sequential assimilation is performed on a conceptual Two Parameter Model (TPM). To demonstrate this approach, ASCAT soil moisture observations are assimilated into TPM using Ensemble Kalman Filter (EnKF) sequential approach. At first, the temporal evolution of the soil moisture sensitivity with respect to streamflow is established. Later, at those time steps when the soil moisture is sensitive, EnKF assimilation is performed. For this purpose, a moderately sized catchment in the Krishna basin, India is selected as the study area. Model calibration and validation are performed between 2000 to 2006 and 2007 to 2011 respectively. Model run without assimilation is considered as open-loop simulation. Streamflow simulation after assimilation showed a significant improvement when compared against the open-loop simulation. KGE value increased from 0.70 to 0.79 and PBIAS value reduced from 18.31 to 1.80. The highlighting factor is that only 39% of the total observations were used during the assimilation process. The initial results are encouraging and looks that the proposed approach shall be highly useful at those locations where data availability for assimilation purpose is a serious concern.  

Visweshwaran R

and 3 more

The need for and the use of different data assimilation techniques to improve the quality of streamflow forecast is now well established. In this paper, the goal is to demonstrate the power of a new class of methods known as the Forward Sensitivity Method (FSM) which is based on the temporal evolution of model sensitivities with respect to the control variables consisting of initial conditions and parameters. FSM operates in two phases: The first phase provides a simple algorithm for placing observations at or near where the square of forward sensitivities attains their maximum values. Using only this selected subset of observations in a weighted least squares method, the second phase then provides an estimate of the unknown elements of the control variables. In this paper, FSM based assimilation is applied to a simple class of two parameter model in a medium-sized agriculture dominant watershed lying in the Krishna River Basin, India. Four assimilation scenarios were tested to determine the effect of assimilating only sensitive observations as well as the impact of temporally evolving initial condition sensitivity. Sensitivity results showed that observations during the monsoon time alone are enough for assimilation purposes, which has helped in reducing the computational time greatly. Assimilation and forecast results also indicated that the scenarios which assimilated only sensitive observations are better in estimating daily streamflow. From the obtained results, it is concluded that FSM based assimilation has significant potential to improve the streamflow simulations, especially in places where data availability remains a major challenge.