Philip W Boyd

and 10 more

Deep Chlorophyll Maxima (DCMs) are ubiquitous in low-latitude oceans, and of recognized biogeochemical and ecological importance. DCMs have been observed in the Southern Ocean, initially from ships and recently from profiling robotic floats, but with less understanding of their onset, duration, underlying drivers, or whether they are associated with enhanced biomass features. We report the characteristics of a DCM and DBM (Deep Biomass Maximum) in the Inter-Polar-Frontal-Zone (IPFZ) south of Australia from CTD profiles, shipboard-incubated samples, a towbody, and a BGC-ARGO float. The DCM and DBM were ~20 m thick and co-located with the nutricline, in the vicinity of a subsurface ammonium maximum characteristic of the IPFZ, but ~100 m shallower than the ferricline. Towbody transects demonstrated that the co-located DCM/DBM was broadly present across the IPFZ. Large healthy diatoms, with low iron requirements, resided within the DCM/DBM, and fixed up to 20 mmol C m-2 d-1. The BGC-ARGO float revealed the DCM/DBM persisted for >3 months. We propose a dual environmental mechanism to drive DCM/DBM formation and persistence within the IPFZ: sustained supply of both recycled iron within the subsurface ammonium maxima and upward silicate transport from depth. DCM/DBM cell-specific growth rates were considerably slower than those in the overlying mixed layer, implying that phytoplankton losses are also reduced, possibly as a result of heavily silicified diatom frustules. The light-limited seasonal termination of the observed DCM/DBM did not result in a ‘diatom dump’, rather ongoing diatom downward export occurred throughout its multi-month persistence.

Lennart Thomas Bach

and 7 more

Abstract Ocean Iron Fertilization (OIF) aims to remove carbon dioxide (CO2) from the atmosphere by stimulating phytoplankton carbon-fixation and subsequent deep ocean carbon sequestration in iron-limited oceanic regions. Transdisciplinary assessments of OIF have revealed overwhelming challenges around the detection and verification of carbon sequestration and wide-ranging environmental side-effects, thereby dampening enthusiasm for OIF. Here, we utilize 5 requirements that strongly influence whether OIF can lead to atmospheric CO2 removal (CDR): The requirement (1) to use preformed nutrients from the lower overturning circulation cell; (2) for prevailing Fe-limitation; (3) for sufficient underwater light for photosynthesis; (4) for efficient carbon sequestration; (5) for sufficient air-sea CO2 transfer. We systematically evaluate these requirements using observational, experimental, and numerical data to generate circumpolar maps of OIF (cost-)efficiency south of 60°S. Results suggest that (cost-)efficient CDR is restricted to locations on the Antarctic Shelf. Here, CDR costs can be <100 US$/tonne CO2 while they are mainly >>1000 US$/tonne CO2 in offshore regions of the Southern Ocean, where mesoscale OIF experiments have previously been conducted. However, sensitivity analyses underscore that (cost-)efficiency is in all cases associated with large variability and are thus difficult to predict, which reflects our insufficient understanding of the relevant biogeochemical and physical processes. While OIF implementation on Antarctic shelves appears most (cost-)efficient, it raises legal questions because regions close to Antarctica fall under 3 overlapping layers of international law. Furthermore, the constraints set by efficiency and costs reduce the area suitable for OIF, thereby likely reducing its maximum CDR potential.
Manganese (Mn) is an essential element for photosynthetic life, yet concentrations in Southern Ocean open waters are very low, resulting from biological uptake along with limited external inputs. At southern latitudes, waters overlying the Antarctic shelf are expected to have much higher Mn concentrations due to their proximity to external sources such as sediment and sea ice. In this study, we investigated the potential export of Mn-rich Antarctic shelf waters toward depleted open Southern Ocean waters. Our results showed that while high Mn concentrations were observed over the shelf, strong biological uptake decreased dissolved Mn concentrations in surface waters north of the Southern Antarctic Circumpolar Current Front (< 0.1 nM), limiting export of shelf Mn to the open Southern Ocean. Conversely, in bottom waters, mixing between Mn-rich Antarctic Bottom Waters and Mn-depleted Low Circumpolar Deep Waters combined with scavenging processes led to a decrease in dissolved Mn concentrations with distance from the coast. Subsurface dissolved Mn maxima represented a potential reservoir for surface waters (0.3 – 0.6 nM). However, these high subsurface values decreased with distance from the coast, suggesting these features may result from external sources near the shelf in addition to particle remineralization. Overall, these results imply that the lower-than-expected lateral export of trace metal-enriched waters contributes to the extremely low (< 0.1 nM) and potentially co-limiting Mn concentrations previously reported further north in this Southern Ocean region.

Marion Fourquez

and 10 more

In the Subantarctic sector of the Southern Ocean, vertical entrainment of dissolved iron (DFe) triggers the seasonal productivity cycle. However, diminishing physical supply of new Fe during the spring to summer transition rapidly drives epipelagic microbial communities to rely upon recycled DFe for growth. Hence, subpolar waters evolve seasonally from a high fe ratio system (i.e., [uptake of new Fe]/[uptake of new+recycled Fe]) to a low fe ratio system. Here, we tested how resident microbes within a cyclonic eddy respond to different Fe/ligand inputs which mimic entrained new DFe (Fe-NEW), diffusively-supplied regenerated DFe (Fe-REG), and a control with no addition of DFe (Fe-NO). After 6 days, 3.5 (Fe-NO, Fe-NEW) to 5-fold (Fe-REG) increases in Chl a were observed despite ~2.5-fold range between treatments of initial DFe. Marked differences were also evident in the proportion of in vitro DFe derived from recycling to sustain phytoplankton growth (Fe-REG, 30% recycled c.f. 70% Fe-NEW, 50% Fe-NO). This trend supports the concept that DFe/ligands released from subsurface particles are more bioavailable than new DFe collected at the same depth. This additional recycling may be mediated by bacteria. Indeed, by day 6 bacterial production (BP) was comparable between Fe-NO and Fe-NEW but~2 fold higher in Fe-REG. Interestingly, a preferential response of phytoplankton (haptophyte-dominated) relative to bacteria was also found in Fe-REG. In contrast, in Fe-NEW and Fe-NO the proportion of diatoms increased. Hence, different modes of Fe/ligand supply modify BP and Fe bioavailability to phytoplankton that may drive distinctive floristic shifts and biogeochemical signatures.