Wim Simons

and 19 more

A devastating tsunami struck Palu Bay in the wake of the 28 September 2018 M$_{\mathrm{w}}=7.5$ Palu earthquake (Sulawesi, Indonesia). With a predominantly strike-slip mechanism, the question remains whether this unexpected tsunami was generated by the earthquake itself, or rather by earthquake-induced landslides. In this study we examine the tsunami potential of the co-seismic deformation. To this end, we present a novel geodetic dataset of GPS and multiple SAR-derived displacement fields to estimate a 3D co-seismic surface deformation field. The data reveal a number of fault bends, conforming to our interpretation of the tectonic setting as a transtensional basin. Using a Bayesian framework, we provide robust finite fault solutions of the co-seismic slip distribution, incorporating several scenarios of tectonically feasible fault orientations below the bay. These finite fault scenarios involve large co-seismic uplift (~2 m) below the bay due to thrusting on a restraining fault bend that connects the offshore continuation of two parallel onshore fault segments. With the co-seismic displacement estimates as input we simulate a number of tsunami cases. For most locations for which video-derived tsunami waveforms are available our models provide a qualitative fit to leading wave arrival times and polarity. The modeled tsunamis explain most of the observed runup. We conclude that co-seismic deformation was the main driver behind the tsunami that followed the Palu earthquake. Our unique geodetic dataset constrains vertical motions of the sea floor, and sheds new light on the tsunamigenesis of strike-slip faults in transtensional basins.

Celine P. Marsman

and 3 more

In Southeast Alaska, extreme uplift rates are primarily caused by glacial isostatic adjustment (GIA), as a result of ice thickness changes from the Little Ice Age to the present combined with a low-viscosity asthenosphere. Previous GIA models adopted a 1-D Earth structure. However, the actual Earth structure is likely more complex due to the long history of subduction and tectonism and the transition from a continental to an oceanic plate. Seismic evidence shows a laterally heterogenous Earth structure. In this study a numeral model is constructed for Southeast Alaska, which allows for the inclusion of lateral viscosity variations. The viscosity follows from scaling relationships between seismic velocity anomalies and viscosity variations. We use this scaling relationship to constrain the thermal effect on seismic variations and investigate the importance of lateral viscosity variations. We find that a thermal contribution to seismic anomalies of 10% is required to explain the GIA observations. This implies that non-thermal effects control seismic anomaly variations in the shallow upper mantle. Due to the regional geologic history, it is likely that hydration of the mantle impact both viscosity and seismic velocity. The best-fit model has a background viscosity of 5.0×10^19 Pa-s, and viscosities at ~80 km depth range from 1.8×10^19 to 4.5×10^19 Pa-s. A 1-D averaged version of the 3-D model performed slightly better, however, the two models were statistically equivalent within a 2σ measurement uncertainty. Thus, lateral viscosity variations do not contribute significantly to the uplift rates measured with the current accuracy and distribution of sites.