Daniel Toledo

and 18 more

The Mars Environmental Dynamics Analyzer (MEDA) instrument, on board the NASA’s Mars 2020 Perseverance rover, includes a number of sensors to characterize the Martian atmosphere. One of this sensors is the Radiation and Dust Sensor (RDS) that measures the solar irradiance at different wavelengths and geometries. We analyzed the RDS observations made during twilight for the period between sol 71 and 492 of the mission (Ls 39◦-262◦) to characterize the clouds over the Perseverance rover site. Using the ratio between the irradiance at zenith at 450 and 750 nm, we inferred that the main constituent of the detected high-altitude aerosol layers was ice from Ls= 39◦ to 150◦ (cloudy period), an dust from Ls 150◦-262◦. A total of 161 twilights were analyzed in the cloudy period using a radiative transfer code and we found: i) signatures of clouds/hazes in the signals in the 58 % of the twilights; ii) most of the clouds had altitudes between 40-50 km, suggesting water ice composition, and had particle sizes between 0.6 and 2 μm; iii) the cloud activity at sunrise is slightly higher that at sunset, likely due to the differences in temperature; iv) the time period with more cloud detections and with the greatest cloud opacities is during Ls 120◦-150◦; and v) a notable decrease in the cloud activity around the aphelion, along with lower cloud altitudes and opacities. This decrease in cloud activity indicates lower concentrations of water vapor or cloud condensation nuclei (dust) around this period in the Martian mesosphere.

Joonas Leino

and 7 more

Cyclic absorption of solar radiation generates oscillations in atmospheric fields. These oscillations are called atmospheric or thermal tides, which are furthermore modified by topography and surface properties. This leads to a complex mix of sun-synchronous and non sun-synchronous tides that propagate around the planet eastward and westward. This study focuses on analyzing the ter-diurnal component (period of 8 hr) from surface pressure observations by Mars Science Laboratory (MSL), InSight, Viking Lander (VL) 1, and VL2. General Circulation Model (GCM) results are used to provide a global context for interpreting the observed ter-diurnal tide properties. MSL and InSight have a clear and similar seasonal cycle, with local amplitude peaks at around solar longitude (Ls) 60◦ , Ls 130◦ and Ls 320◦ . The amplitude peak at Ls 320◦ is related to the annual dust storm, while the dust storm around Ls 230◦ is not detected by either platforms. During the global dust storms, MSL, VL1, and VL2 detect their highest amplitudes. GCM predicts the weakest amplitudes at the equinoxes, while the strongest ones are predicted in summertime for both hemispheres. GCM amplitudes are typically lower than observed, but match better during the aphelion season. During this time, model results suggest that the two most prominent modes are the sun-synchronous ter-diurnal tide (TW3) and an eastward propagating resonantly-enhanced Kelvin wave (TE3). Simulations with and without the effect of radiative heating by water ice clouds indicate the clouds may play a significant role in forcing the ter-diurnal tide during northern hemisphere summer season.

Ari-Matti Harri

and 21 more

The Mars2020 Perseverance Rover landed successfully on the Martian surface on the Jezero Crater floor (18.44°N, 77.45°E) at Martian solar longitude, $L_s$, $\sim$5 in February 2021. Since then it has produced highly valuable environmental measurements with a versatile scientific payload including the MEDA (Mars Environmental Dynamics Analyzer) suite of environmental sensors. One of the MEDA systems is the PS pressure sensor system which weighs 40 grams and has an estimated absolute accuracy of better than 3.5 Pa and a resolution of 0.13 Pa. We present initial results from the first 414 sols of Martian atmospheric surface pressure observations by the PS whose performance was found to meet its specifications. Observed sol-averaged atmospheric pressures follow an anticipated pattern of pressure variation in the course of the advancing season and are consistent with data from other landing missions. The observed diurnal pressure amplitude varies by $\sim$2-5 \% of the sol-averaged pressure, with absolute amplitude 10-35 Pa in an approximately direct relationship with airborne dust. During a regional dust storm, which began at $L_s~135^\circ$ the diurnal pressure amplitude roughly doubles. The diurnal pressure variations were found to be remarkably sensitive to the seasonal evolution of the atmosphere. In particular analysis of the diurnal pressure signature revealed diagnostic information likely related to the regional scale structure of the atmosphere. Comparison of Perseverance pressure observations to data from other landers reveals the global scale seasonal behaviour of Mars’ atmosphere.

Maria Hieta

and 15 more

German Martinez

and 33 more

The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-their-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ~ 6-174 deg; in Martian Year 36) to determine the surface radiative budget on Mars, and to calculate the broadband albedo (0.3-3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical models. We found that: (1) the observed downwelling atmospheric IR flux is significantly lower than model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (2) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (3) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (4) Averages across Perseverance’ traverse of albedo and thermal inertia (spatial resolution of ~3-4 m2) are in very good agreement with collocated retrievals of thermal inertia from THEMIS (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25-2.9 μm range from (spatial resolution of ~300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.

Ricardo Hueso

and 33 more

Jorge Pla-García

and 21 more