loading page

Convective vortices and dust devils detected and characterized by Mars 2020
  • +31
  • Ricardo Hueso,
  • Claire Newman,
  • Teresa del Rio-Gaztelurrutia,
  • Asier Munguira,
  • Agustín Sánchez-Lavega,
  • Daniel Toledo,
  • Víctor Apéstigue,
  • Ignacio Arruego,
  • Alvaro Vicente-Retortillo,
  • German Martinez,
  • Mark T Lemmon,
  • Ralph D. Lorenz,
  • Mark Ian Richardson,
  • Daniel Viúdez-Moreiras,
  • Manuel de la Torre Juárez,
  • Jose Antonio Rodríguez-Manfredi,
  • Leslie Tamppari,
  • Naomi Murdoch,
  • Sara Navarro López,
  • Javier Gomez-Elvira,
  • Mariah Baker,
  • Jorge Pla-García,
  • Ari-Matti Harri,
  • Maria Hieta,
  • Maria Genzer,
  • Jouni Polkko,
  • Iina Jaakonaho,
  • Teemu J T Mäkinen,
  • Alexander Stott,
  • David Mimoun,
  • Baptiste Chide,
  • Eduardo Sebastian Martínez,
  • Donald Banfield,
  • Alain Lepinette Malvitte
Ricardo Hueso
UPV/EHU

Corresponding Author:[email protected]

Author Profile
Claire Newman
Aeolis Research
Author Profile
Teresa del Rio-Gaztelurrutia
Universidad País Vasco UPV/EHU
Author Profile
Asier Munguira
UPV/EHU
Author Profile
Agustín Sánchez-Lavega
Universidad del Pais Vasco UPV/EHU
Author Profile
Daniel Toledo
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Author Profile
Víctor Apéstigue
National Institute of Aerospace Technology (INTA)
Author Profile
Ignacio Arruego
INTA
Author Profile
Alvaro Vicente-Retortillo
Centro de Astrobiología (INTA-CSIC)
Author Profile
German Martinez
Lunar and Planetary Institute
Author Profile
Mark T Lemmon
Space Science Institute
Author Profile
Ralph D. Lorenz
Johns Hopkins University Applied Physics Lab
Author Profile
Mark Ian Richardson
Aeolis Research
Author Profile
Daniel Viúdez-Moreiras
Centro de Astrobiología (INTA-CSIC)
Author Profile
Manuel de la Torre Juárez
Jet Propulsion Laboratory- California Institute of Technology, Pasadena, CA, USA
Author Profile
Jose Antonio Rodríguez-Manfredi
Centro de Astrobiología
Author Profile
Leslie Tamppari
Jet Propulsion Laboratory
Author Profile
Naomi Murdoch
ISAE SUPAERO
Author Profile
Sara Navarro López
Centro de Astrobiología
Author Profile
Javier Gomez-Elvira
Centro de Astrobiologia
Author Profile
Mariah Baker
Smithsonian Institution
Author Profile
Jorge Pla-García
Centro de Astrobiología (CSIC-INTA)
Author Profile
Ari-Matti Harri
Finnish Meteorological Institute
Author Profile
Maria Hieta
Finnish Meteorological Institute
Author Profile
Maria Genzer
Finnish Meteorological Institute
Author Profile
Jouni Polkko
Finnish Meteorological Institute
Author Profile
Iina Jaakonaho
Finnish Meteorological Institute
Author Profile
Teemu J T Mäkinen
Finnish Meteorological Institute
Author Profile
Alexander Stott
ISAE SUPAERO
Author Profile
David Mimoun
ISAE, INSTITUT SUPERIEUR DE L'AERONAUTIQUE ET DE L'ESPACE
Author Profile
Baptiste Chide
Los Alamos National Laboratory
Author Profile
Eduardo Sebastian Martínez
Centro de Astrobiología
Author Profile
Donald Banfield
Cornell
Author Profile
Alain Lepinette Malvitte
Centro de Astrobiologia, INTA-CSIC
Author Profile

Abstract

We characterize the vortex and dust devil activity at Jezero from pressure and winds obtained with the MEDA instrument on Mars 2020 over 415 sols (Ls=6-213º). Vortices are abundant (4.9 vortices per sol with pressure drops >0.5 Pa when correcting from gaps in coverage) and peak at noon. At least one in every 5 vortices carries dust from RDS-MEDA data, and intense vortices are more likely to carry dust. Seasonal variability was small but dust devils were abundant during a dust storm (Ls=152-156º). Vortices are more frequent and intense over terrains with lower thermal inertia favoring a higher daytime surface-to-air temperature gradient. We fit measurements of wind and pressure during dust devil encounters to models of vortices, and investigate their physical characteristics. Diameters range from 5 to 135 m with a mean of 20 m. Three 100-m size events passed within 30 m of the rover. From the close encounters we estimate a dust devil activity of 2.0-3.0 dust devils km$^{-2}$ sol$^{-1}$. A comparison of MEDA observations with a Large Eddy Simulation of Jezero at Ls=45º produces a similar result. We estimate that large dust devils with diameters $>100$ m have a density of 0.1 dust devils km-2sol-1, implying that dust lifting is dominated by the largest vortices in the region. At least one vortex had a central pressure drop of 9.0 Pa and internal winds of 25 ms-1. The MEDA wind sensors were partially damaged during two dust devil encounters, and we detail these events.