Claudine Hauri

and 6 more

Recent marine heatwaves in the Gulf of Alaska have had devastating and lasting impacts on species from various trophic levels. As a result of climate change, total heat exposure in the upper ocean has become longer, more intense, more frequent, and more likely to happen at the same time as other environmental extremes. The combination of multiple environmental extremes can exacerbate the response of sensitive marine organisms. Our hindcast simulation provides the first indication that more than 20 % of the bottom water of the Gulf of Alaska continental shelf was exposed to quadruple heat, positive [H+], negative Ωarag, and negative [O2] compound extreme events during the 2018-2020 marine heat wave. Natural intrusion of deep and acidified water combined with the marine heat wave triggered the first occurrence of these events in 2019. During the 2013-2016 marine heat wave, surface waters were already exposed to widespread marine heat and positive [H+] compound extreme events due to the temperature effect on the [H+]. We introduce a new Gulf of Alaska Downwelling Index (GOADI) with short-term predictive skill, which can serve as indicator of past and near-future positive [H+], negative Ωarag, and negative [O2] compound extreme events on the shelf. Our results suggest that the marine heat waves may have not been the sole environmental stressor that led to the observed ecosystem impacts and warrant a closer look at existing in situ inorganic carbon and other environmental data in combination with biological observations and model output.

Judith Hauck

and 13 more

We assess the Southern Ocean CO2 uptake (1985-2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project phase 2 (RECCAP2). The Southern Ocean acted as a sink for CO2 with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75±0.28 PgCyr-1) and pCO2-observation-based products (0.73±0.07 PgCyr-1). This sink is only half that reported by RECCAP1. The present-day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2 (Cant) into the ocean, thereby overcompensating the loss of natural CO2 to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, with pCO2-products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26±0.06 and 0.11±0.03 PgCyr-1 decade-1 respectively). This is despite nearly identical pCO2 trends in GOBMs and pCO2-products when both products are compared only at the locations where pCO2 was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non-thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cant points to an underestimate of Cant uptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push towards better process understanding of drivers of the carbon cycle.

Scott C. Doney

and 9 more

This study characterized ocean biological carbon pump metrics in the second iteration of the REgional Carbon Cycle Assessment and Processes (RECCAP2) project, a coordinated, international effort to constrain contemporary ocean carbon air-sea fluxes and interior carbon storage trends using a combination of observation-based estimates, inverse models, and global ocean biogeochemical models. The analysis here focused on comparisons of global and biome-scale regional patterns in particulate organic carbon production and sinking flux from the RECCAP2 model ensemble against observational products derived from satellite remote sensing, sediment traps, and geochemical methods. There was generally encouraging model-data agreement in large-scale spatial patterns, though with substantial spread across the model ensemble and observational products. The global-integrated, model ensemble-mean export production, taken as the sinking particulate organic carbon flux at 100 m (6.41 ± 1.52 Pg C yr–1), and export ratio defined as sinking flux divided by net primary production (0.154 ± 0.026) both fell at the lower end of observational estimates. Comparison with observational constraints also suggested that the model ensemble may have underestimated regional biological CO2 drawdown and air-sea CO2 flux in high productivity regions. Reasonable model-data agreement was found for global-integrated, ensemble-mean sinking particulate organic carbon flux into the deep ocean at 1000 m (0.95 ± 0.64 Pg C yr–1) and the transfer efficiency defined as flux at 1000m divided by flux at 100m (0.121 ± 0.035), with both variables exhibiting considerable regional variability. Future modeling studies are needed to improve system-level simulation of interaction between model ocean physics and biogeochemical response.

Laure Resplandy

and 34 more

The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). Major advances have improved our understanding of the coastal air-sea exchanges of these three gasses since the first phase of the Regional Carbon Cycle Assessment and Processes (RECCAP in 2013), but a comprehensive view that integrates the three gasses at the global scale is still lacking. In this second phase (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ~60% larger in models (-0.72 vs. -0.44 PgC/yr, 1998-2018, coastal ocean area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e /yr in observational product and +0.54 PgCO2-e /yr in model median) and of CH4 (+0.21 PgCO2-e /yr in observational product), which offsets a substantial proportion of the net radiative effect of coastal \co uptake (35-58% in CO2-equivalents). Data products and models need improvement to better resolve the spatio-temporal variability and long term trends in CO2, N2O and CH4 in the global coastal ocean.

Jessica Zaiss

and 4 more

Ocean phytoplankton play a critical role in the global carbon cycle, contributing ~50% of global photosynthesis. As planktonic organisms, phytoplankton encounter significant environmental variability as they are advected throughout the ocean. How this variability impacts phytoplankton growth rates and population dynamics remains unclear. Here, we systematically investigated the impact of different rates and magnitudes of sea surface temperature (SST) variability on phytoplankton community growth rates using surface drifter observations from the Southern Ocean (> 30oS) and a phenotype-based ecosystem model. Short-term SST variability (<7 days) had a minimal impact on phytoplankton community growth rates. Moderate SST changes of 3-5oC over 7-21 days produced a large time lag between the temperature change and the biological response. The impact of SST variability on community growth rates was nonlinear and a function of the rate and magnitude of change. Additionally, the nature of variability generated in a Lagrangian reference frame (following trajectories of surface water parcels) was larger than that within an Eulerian reference frame (fixed point), which initiated different phytoplankton responses between the two reference frames. Finally, we found that these dynamics were not captured by the Eppley growth model commonly used in global biogeochemical models and resulted in an overestimation of community growth rates, particularly in dynamic, strong frontal regions of the Southern Ocean. This work demonstrates that the timescale for environmental selection (community replacement) is a critical factor in determining community composition and takes a first step towards including the impact of variability and biological response times into biogeochemical models.
Global Earth system model simulations of ocean carbon export flux are commonly interpreted only at a fixed depth horizon of 100-m, despite the fact that the maximum annual mixed layer depth (MLDmax) is a more appropriate depth horizon to evaluate export-driven carbon sequestration. We compare particulate organic carbon (POC) flux and export efficiency (e-ratio) evaluated at both the MLDmax and 100-m depth horizons, simulated for the 21st century (2005-2100) under the RCP8.5 climate change scenario with the Biogeochemical Elemental Cycle model embedded in the Community Earth System Model (CESM1-BEC). These two depth horizon choices produce differing baseline global rates and spatial patterns of POC flux and e-ratio, with the greatest discrepancies found in regions with deep winter mixing. Over the 21st century, enhanced stratification reduces the depth of MLDmax, with the most pronounced reductions in regions that currently experience the deepest winter mixing. Simulated global mean decreases in POC flux and in e-ratio over the 21st century are similar for both depth horizons (8-9% for POC flux and 4-6% for e-ratio), yet the spatial patterns of change are quite different. The model simulates less pronounced decreases and even increases in POC flux and e-ratio in deep winter mixing regions when evaluated at MLDmax, since enhanced stratification over the 21st century shoals the depth of this horizon. The differing spatial patterns of change across these two depth horizons demonstrate the importance of including multiple export depth horizons in observational and modeling efforts to monitor and predict potential future changes to export.

Cristina Schultz

and 6 more

The Southern Ocean is chronically under-sampled due to its remoteness, harsh environment and sea-ice cover. Ocean circulation models yield significant insight into key processes and to some extent obviate the dearth of data, however they often underestimate surface mixed layer depth (MLD), with consequences for water-column properties. In this study, a coupled circulation and sea-ice model was implemented for the region adjacent to the West Antarctic Peninsula (WAP), a climatically sensitive region which has exhibited decadal trends toward higher temperatures, a shorter sea-ice season and increasing glacial freshwater input, overlain by strong interannual variability. Hindcast simulations were conducted with different air-ice drag coefficients and Langmuir-circulation parameterizations to determine the impact of these factors on MLD. Including Langmuir circulation deepened the surface mixed layer, with the deepening being more pronounced in the shelf and slope regions. Optimal selection of an air-ice drag coefficient also increased the modeled MLD by similar amounts, and had a larger impact in improving the reliability of the simulated MLD interannual variability. This study highlights the importance of sea ice volume and redistribution to correctly reproduce the physics of the underlying ocean, and the potential of appropriately parameterizing Langmuir circulation to help correct for a bias towards shallow MLD in the Southern Ocean. The model also reproduces observed freshwater patterns in the WAP during late summer and suggests that areas of intense summertime sea-ice melt can still show net annual freezing due to high sea-ice formation during the winter.

Cristina Schultz

and 4 more

The ocean coastal-shelf-slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea-ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea-ice and biogeochemistry model (MITgcm-REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea-ice and ocean color, and research ship surveys from the Palmer Long Term Ecological Research (LTER) program. The simulations suggest that the annual sea-ice cycle has an important role in the seasonal DIC drawdown. In years of early sea-ice retreat there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea-ice retreat show larger DIC drawdown, attributed to lower air-sea CO2 fluxes and increased dilution by sea-ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.

Matthew C. Long

and 9 more

The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry model that simulates marine ecosystem dynamics and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of the Community Earth System Model (CESM); it supports flexible ecosystem configuration of multiple phytoplankton and zooplankton functional types; it is also portable, designed to interface with multiple ocean circulation models. Here, we present scientific documentation of MARBL, describe its configuration in CESM2 experiments included in the Coupled Model Intercomparison Project version 6 (CMIP6), and evaluate its performance against a number of observational datasets. The model simulates an air-sea CO2 flux and many aspects of the carbon cycle in good agreement with observations. However, the simulated integrated uptake of anthropogenic CO2 is weak, which we link to poor thermocline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This also contributes to larger-than-observed oxygen minimum zones. Moreover, radiocarbon distributions show that the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive oxygen depletion and nutrient trapping at depth. Surface macronutrient biases are generally positive at low latitudes and negative at high latitudes. CESM2 simulates globally-integrated net primary production (NPP) of 48 Pg C yr-1 and particulate export flux at 100 m of 7.1 Pg C yr-1. The impacts of climate change include an increase in globally-integrated NPP, but substantial declines in the North Atlantic. Particulate export is projected to decline globally, attributable to decreasing export efficiency associated with changes in phytoplankton community composition.