Petr Brož

and 8 more

Subtle mounds have been discovered in the source areas of martian kilometer-sized flows and on top of summit areas of domes. These features have been suggested to be related to subsurface sediment mobilization, opening questions regarding their formation mechanisms. Previous studies hypothesized that they mark the position of feeder vents through which mud was brought to the surface. Two theories have been proposed: a) ascent of more viscous mud during the late stage of eruption and b) expansion of mud within the conduit due to the instability of water under martian conditions. Here we present experiments performed inside a low-pressure chamber, designed to investigate whether the volume of mud changes when exposed to a reduced atmospheric pressure. Depending on the mud viscosity, we observe volumetric increase of up to 30% at the martian average pressure of ~6 mbar. This is because the low pressure causes instability of the water within the mud, leading to the formation of bubbles that increase the volume of the mixture. This mechanism bears resemblance to the volumetric changes associated with the degassing of terrestrial lavas or mud volcano eruptions caused by a rapid pressure drop. We conclude that the mounds associated with putative martian sedimentary volcanoes might indeed be explained by volumetric changes of the mud. We also show that mud flows on Mars and elsewhere in the Solar System could behave differently to those found on Earth, because mud dynamics are affected by the formation of bubbles in response to the low atmospheric pressure.

Matthew P. Golombek

and 11 more

Rocks around the InSight lander were measured in lander orthoimages of the near field (<10 m), in panoramas of the far field (<40 m), and in a high-resolution orbital image around the lander (1 km2). The cumulative fractional area versus diameter size-frequency distributions for four areas in the near field fall on exponential model curves used for estimating hazards for landing spacecraft. The rock abundance varies in the near field from 0.6% for the sand and pebble rich area to the east within Homestead hollow, to ~3-5% for the progressively rockier areas to the south, north and west. The rock abundance of the entire near field is just over 3%, which falls between that at the Phoenix (2%) and Spirit (5%) landing sites. Rocks in the far field (<40 m) that could be identified in both the surface panorama and a high-resolution orbital image fall on the same exponential model curve as the average near field rocks. Rocks measured in a high-resolution orbital image (27.5 cm/pixel) within ~500 m of the lander that includes several rocky ejecta craters fall on 4-5% exponential model curves, similar to the northern and western near field areas. As a result, the rock abundances observed from orbit falls on the same exponential model rock abundance curves as those viewed from the surface. These rock abundance measurements around the lander are consistent with thermal imaging estimates over larger pixel areas as well as expectations from fragmentation theory of an impacted Amazonian/Hesperian lava flow.

Daniel Mège

and 6 more

Clement Perrin

and 11 more