Rebecca Buchholz

and 9 more

Fire emissions are an important component of global models, which help to understand the influence of sources, transport and chemistry on atmospheric composition. Global fire emission inventories can vary substantially due to the assumptions made in the emission creation process, including the defined vegetation type, fire detection, fuel loading, fraction of vegetation burned and emissions factors. Here, we focus on the uncertainty in emission factors and the resulting impact on modeled composition. Our study uses the Community Atmosphere Model with chemistry (CAM-chem) to model atmospheric composition for 2014, a year chosen for the relatively quiet El Niño Southern Oscillation activity. We focus on carbon monoxide (CO), a trace gas emitted from incomplete combustion and also produced from secondary oxidation of volatile organic compounds (VOCs). Fire is a major source of atmospheric CO and VOCs. Modeled CO from four fire emission inventories (CMIP6/GFED4s, QFED2.5, GFAS1.2 and FINN1.5) are compared after being implemented in CAM-chem. Multiple sensitivity tests are performed based on CO and VOC emission factor uncertainties. We compare model output in the 14 basis regions defined by the Global Fire Emissions Database (GFED) team and evaluate against CO observations from the Measurements of Pollution in the Troposphere (MOPITT) satellite-based instrument. For some regions, emission factor uncertainty spans the results found by using different inventories. Finally, we use modeled ozone (O3) to briefly investigate how emission factor uncertainty influences the atmospheric oxidative environment. Overall, accounting for emission factor uncertainty when modeling atmospheric chemistry can lend a range of uncertainty to simulated results.

Rebecca Buchholz

and 5 more

Fire emissions are a major contributor to atmospheric composition, affecting atmospheric oxidizing capacity and air quality. Transported amounts from Northern Hemisphere boreal fires can reach the pristine Arctic atmosphere as well as impact air quality in populated regions. Carbon monoxide (CO) is a useful trace gas emitted from fires that can be used to link extreme fire events with climate variability. We use our recently developed statistical tool to investigate the climate drivers of satellite measured CO variability in two Northern Hemisphere boreal fire regions: northwest Canada and Siberia. Our focus is on quantifying the ability of climate mode indices for the Pacific, Atlantic, Indian and Arctic Oceans in predicting CO amounts in these regions. Climate mode indices El Niño Southern Oscillation (ENSO), Tropical North Atlantic (TNA), the Dipole Mode Index (DMI) and the Arctic Oscillation (AO) are used to develop statistical models of column CO interannual variability from the Measurements of Pollution In The Troposphere (MOPITT) satellite instrument, for the time period covering 2001-2017. In addition, we assess the ability of fire emission inventories to reproduce CO, including the Fire Inventory from NCAR (FINN), the NASA Quick Fire Emissions Dataset (QFED) and the Copernicus Atmosphere Monitoring Service (CAMS) Global Fire Assimilation System (GFAS). These are implemented in the NCAR Community Atmosphere Model with chemistry (CAM-chem) and subsequently evaluated against MOPITT CO observations. Emission uncertainty contribution to inter-inventory differences are quantified, and the modeled contribution of fires to CO interannual variability is determined.
Australian fires are a primary driver of variability in Australian atmospheric composition and contribute significantly to regional and global carbon budgets. However, biomass burning emissions from Australia remain highly uncertain. In this work, we use surface in situ, ground-based total column and satellite total column observations to evaluate the ability of two global models (GEOS-Chem and ACCESS-UKCA) and three global biomass burning emission inventories (FINN1.5, GFED4s, and QFED2.4) to simulate carbon monoxide (CO) in the Australian atmosphere. We find that emissions from northern Australia savanna fires are substantially lower in FINN1.5 than in the other inventories. Model simulations driven by FINN1.5 are unable to reproduce either the magnitude or the variability of observed CO in northern Australia. The remaining two inventories perform similarly in reproducing the observed variability, although the larger emissions in QFED2.4 combined with an existing high bias in the southern hemisphere background lead to large CO biases. We therefore recommend GFED4s as the best option of the three for global modelling studies with focus on Australia or the southern hemisphere. Near fresh fire emissions, the higher resolution ACCESS-UKCA model is better able to simulate surface CO than GEOS-Chem, while GEOS-Chem captures more of the observed variability in the total column and remote surface air measurements. We also show that existing observations in Australia can only partially constrain global model estimates of biomass burning. Continuous measurements in fire-prone parts of Australia are needed, along with updates to global biomass burning inventories that are validated with Australian data.

Rebecca Buchholz

and 9 more