Soboh Wajih Al Qeeq

and 7 more

We estimate the global impact of storms on the global structure and dynamics of the nightside plasma sheet (PS) from observations by the NASA mission THEMIS. We focus on an intense storm occurring in December 2015 triggered by interplanetary coronal mass ejections (ICMEs). It starts with a storm sudden commencement (SSC) phase (SYM-H~+50nT) followed by a growth phase (SYM-H~-188nT at the minimum) and then a long recovery phase. We investigate THEMIS observations when the spacecraft were located in the midnight sector of the PS at distances typically between 8 and 13RE. It is found that the PS has been globally compressed up to a value of about~>4nPa during the SSC and main phases, i.e. 8 times larger than its value during the quiet phase before the event. This compression occurs during periods of high dynamic pressure in the ICME (20nPa) about one order of magnitude larger than its value in the pristine solar wind. We infer a global increase of the lobe magnetic field from 30nT to 100nT, confirmed by THEMIS data just outside the PS. During the SSC and main phases, the PS is found thinner by a factor of 2 relative to its thickness at quiet times, while the Tsyganenko T96 magnetic field model shows very stretched magnetic field lines from inner magnetospheric regions toward the nightside. During the recovery phase, whereas the interplanetary pressure has dropped off, the PS tends to gradually recover its quiet phase characteristics (pressure, thickness, magnetic configuration, etc) during a long recovery phase.

Emanuele Cazzola

and 5 more

Gautier Nguyen

and 5 more

The Earth magnetopause is the boundary between the magnetosphere and the shocked solar wind. Its location and shape are primarily determined by the properties of the solar wind and interplanetary magnetic field (IMF) but the nature of the control parameters and to what extent they impact the stand-off distance, the flaring, and the symmetries, on the dayside and night side, is still not well known. We present a large statistical study of the magnetopause location and shape based a multi-mission magnetopause database, cumulating 17 230 crossings on 17 different spacecraft, from the dayside to lunar nightside distances. The IMF clock angle itself (all amplitudes combined) is fount not to impact the stand-off distance, nor does the cone angle. However, the magnetopause is found to move Earthward as the IMF gets stronger and more southward. All upstream conditions combined, it is found that the function used at the root of several analytical models still holds at lunar distances. The meridional flaring is found to depend on the seasonal tilt conditions, being larger in the summer hemisphere. The flaring is also found to depend on the IMF clock angle. Meridional flaring increases as the IMF turns south and is then larger than the equatorial flaring. The equatorial flaring barely changes or weakly increases as the IMF turns northward, and is larger than the meridional flaring for northward conditions. The study pave the way for the elaboration of a new analytical empirical expression magnetopause surface model.