Dirk Olonscheck

and 16 more

Single-model initial-condition large ensembles are powerful tools to quantify the forced response, internal climate variability, and their evolution under global warming. Here, we present the CMIP6 version of the Max Planck Institute Grand Ensemble (MPI-GE CMIP6) with 30 realisations for the historical period and five emission scenarios. The power of MPI-GE CMIP6 goes beyond its predecessor ensemble MPI-GE by providing high-frequency output, the full range of emission scenarios including the highly policy-relevant low emission scenarios SSP1-1.9 and SSP1-2.6, and the opportunity to compare the ensemble to complementary high-resolution simulations. First, we describe MPI-GE CMIP6, evaluate it with observations and reanalyses and compare it to MPI-GE. Then, we demonstrate with six novel application examples how to use the power of the ensemble to better quantify and understand present and future climate extremes, to inform about uncertainty in approaching Paris Agreement global warming limits, and to combine large ensembles and artificial intelligence. For instance, MPI-GE CMIP6 allows us to show that the recently observed Siberian and Pacific North American heatwaves would only avoid reaching 1-2 year return periods in 2071-2100 with low emission scenarios, that recently observed European precipitation extremes are captured only by complementary high-resolution simulations, and that 3-hourly output projects a decreasing activity of storms in mid-latitude oceans. Further, the ensemble is ideal for estimates of probabilities of crossing global warming limits and the irreducible uncertainty introduced by internal variability, and is sufficiently large to be used for infilling surface temperature observations with artificial intelligence.

Holger Pohlmann

and 5 more

We develop a data assimilation scheme with the Icosahedral Non-hydrostatic Earth System Model (ICON-ESM) for operational decadal and seasonal climate predictions at the German weather service. For this purpose, we implement an Ensemble Kalman Filter to the ocean component as a first step towards a weakly coupled data assimilation. We performed an assimilation experiment over the period 1960-2014. This ocean-only assimilation experiment serves to initialize 10-year long retrospective predictions (hindcasts) started each year on 1 November. On multi-annual time scales, we find predictability of sea surface temperature and salinity as well as oceanic heat and salt contents especially in the North Atlantic. The mean Atlantic Meridional Overturning Circulation is realistic and the variability is stable during the assimilation. On seasonal time scales, we find high predictive skill in the tropics with highest values in variables related to the El Niño/Southern Oscillation phenomenon. In the Arctic, the hindcasts correctly represent the decreasing sea ice trend in winter and, to a lesser degree, also in summer, although sea ice concentration is generally much too low in both hemispheres in summer. However, compared to other prediction systems, prediction skill is relatively low in regions apart from the tropical Pacific due to the missing atmospheric assimilation. In addition, we expect a better fine-tuning of the sea ice and the oceanic circulation in the Southern Ocean in ICON-ESM to improve the predictive skill. In general, we demonstrate that our data assimilation method is successfully initializing the oceanic component of the climate system.