We present a comprehensive analysis of the processes that lead to quasilinear pitch-angle-scattering loss of electrons from the L < 4 region of the Earth’s inner magnetosphere during geomagnetically quiet times. We consider scattering via Coulomb collisions, hiss waves, lightning-generated whistler (LGW) waves, waves from ground-based very-low frequency (VLF) transmitters, and electromagnetic ion cyclotron (EMIC) waves. The amplitude, frequency, and wave normal angle spectra of these waves are parameterized with empirical wave models, which are then used to compute pitch-angle diffusion coefficients. From these coefficients, we estimate the decay timescales, or lifetimes, of 30 keV - 4 MeV electrons and compare the results with timescales obtained from in-situ observations. We demonstrate good quantitative agreement between the two over most of the L and energy range under investigation. Our analysis suggests that the electron decay timescales are very sensitive to the choice of plasmaspheric density model. At L < 2, where our theoretical lifetimes do not agree well with the observations, we show that including Coulomb energy drag (ionization energy loss) in our calculations significantly improves the quantitative agreement with the observed decay timescales. We also use an accurate model of the geomagnetic field to provide an estimate of the effect that the drift-loss cone has on the theoretically-calculated electron lifetimes, which are usually obtained using an axisymmetric dipole field.

Ennio Sanchez

and 7 more

Quantification of energetic electron precipitation caused by wave-particle interactions is fundamentally important to understand the cycle of particle energization and loss of the radiation belts. One important way to determine how well the wave-particle interaction models predict losses through pitch-angle scattering into the atmospheric loss cone is the direct comparison between the ionization altitude profiles expected in the atmosphere due to the precipitating fluxes and the ionization profiles actually measured with incoherent scatter radars. This paper reports such a comparison using a forward propagation of loss-cone electron fluxes, calculated with the electron pitch angle diffusion model applied to Van Allen Probes measurements, coupled with the Boulder Electron Radiation to Ionization (BERI) model, which propagates the fluxes into the atmosphere. The density profiles measured with the Poker Flat Incoherent Scatter Radar operating in modes especially designed to optimize measurements in the D-region, show multiple instances of quantitative agreement with predicted density profiles from precipitation of electrons caused by wave-particle interactions in the inner magnetosphere. There are two several-minute long intervals of close prediction-observation approximation in the 65-93 km altitude range. These results indicate that the whistler wave-electron interactions models are realistic and produce precipitation fluxes of electrons with energies between 10 keV to >100 keV that are consistent with observations.