S. Gharari

and 7 more

Lakes and reservoirs are an integral part of the terrestrial water cycle. In this work, we present the implementation of water balance models of lakes and reservoirs into mizuRoute, a vector-based routing model. The developments described here are termed mizuRoute-Lakes. The capabilities of mizuRoute-Lake in simulating the water balance of lakes and reservoirs are demonstrated. The main advantage of mizuRoute-Lake is flexibility in testing alternative lake water balance models within a given river and lake network topology. Users can choose between various types of parametric models that are already implemented in mizuRoute-Lake or data-driven models that provide time-series of the target volume and abstraction from a lake or reservoir from an external source such as historic observation or water management models. The parametric models for lake and reservoir water balance implemented in mizuRoute-Lake are Hanasaki, HYPE, and D{\"o}ll formulations. In general, the parametric models relate the outflow from lakes or reservoirs to the storage and various parameters including inflow, demand, volume of storage, etc. Additionally, this flexibility allows to easily evaluate and compare the effect of various water balance models for a lake or reservoir without needing to reconfigure the routing model. We show the flexibility of mizuRoute-Lake by presenting global, regional and local scale applications. The development of mizuRoute-Lake paves the way for better integration of water management models with existing and future observations such as the Surface Water and Ocean Topography (SWOT) mission, in the context of Earth system modeling.
Despite the proliferation of computer-based research on hydrology and water resources, such research is typically poorly reproducible. Published studies have low reproducibility due to incomplete availability of data and computer code, and a lack of documentation of workflow processes. This leads to a lack of transparency and efficiency because existing code can neither be quality controlled nor re-used. Given the commonalities between existing process-based hydrological models in terms of their required input data and preprocessing steps, open sharing of code can lead to large efficiency gains for the modeling community. Here we present a model configuration workflow that provides full reproducibility of the resulting model instantiations in a way that separates the model-agnostic preprocessing of specific datasets from the model-specific requirements that models impose on their input files. We use this workflow to create large-domain (global, continental) and local configurations of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) hydrologic model connected to the mizuRoute routing model. These examples show how a relatively complex model setup over a large domain can be organized in a reproducible and structured way that has the potential to accelerate advances in hydrologic modeling for the community as a whole. We provide a tentative blueprint of how community modeling initiatives can be built on top of workflows such as this. We term our workflow the “Community Workflows to Advance Reproducibility in Hydrologic Modeling’‘ (CWARHM; pronounced “swarm”).

Razi Sheikholeslami

and 3 more

Global Sensitivity Analysis (GSA) has long been recognized as an indispensable tool for model analysis. GSA has been extensively used for model simplification, identifiability analysis, and diagnostic tests, among others. Nevertheless, computationally efficient methodologies are sorely needed for GSA, not only to reduce the computational overhead, but also to improve the quality and robustness of the results. This is especially the case for process-based hydrologic models, as their simulation time is often too high and is typically beyond the availability for a comprehensive GSA. We overcome this computational barrier by developing an efficient variance-based sensitivity analysis using copulas. Our data-driven method, called VISCOUS, approximates the joint probability density function of the given set of input-output pairs using Gaussian mixture copula to provide a given-data estimation of the sensitivity indices. This enables our method to identify dominant hydrologic factors by recycling pre-computed set of model evaluations or existing input-output data, and thus avoids augmenting the computational cost. We used two hydrologic models of increasing complexity (HBV and VIC) to assess the performance of the proposed method. Our results confirm that VISCOUS and the original variance-based method can detect similar important and unimportant factors. However, while being robust, our method can substantially reduce the computational cost. The results here are particularly significant for, though not limited to, process-based models with many uncertain parameters, large domain size, and high spatial and temporal resolution.