Laura Gomez-Navarro

and 8 more

Understanding the pathways of floating material at the surface ocean is important to improve our knowledge on surface circulation and for its ecological and environmental impacts. Virtual particle simulations are a common method to simulate the dispersion of floating material. To advect the particles, velocities from ocean models are often used. Yet, the contribution of different ocean dynamics (at different temporal and spatial scales) to the net Lagrangian transport remains unclear. Here we focus on tidal forcing, only included in recent models, and so our research question is: What is the effect of tidal forcing on virtual particle dispersion at the ocean surface? By comparing a twin simulation with and without tidal forcing, we conclude that tides play an important role in horizontal Lagrangian dynamics. We focus on the Açores Islands region, and we find that surface particles travel a longer cumulative distance and a lower total distance with than without tidal forcing and a higher variability in surface particle accumulation patterns is present with tidal forcing.  The differences found in the surface particle accumulation patterns can be more than a 40\% increase/decrease. This has important implications for virtual particle simulations, showing that more than tidal currents need to be considered.  A deeper understanding of the dynamics behind these tidal forcing impacts is necessary, but our outcomes can already help improve Lagrangian simulations. This is particularly relevant for simulations done to understand the connectivity of marine species and for marine pollution applications.

Adekunle Ajayi

and 6 more

Fine-scale motions ($<$100 km) contribute significantly to the exchanges and dissipation of kinetic energy in the upper ocean. However, knowledge of ocean kinetic energy at fine-scales (in terms of density and transfers) is currently limited due to the lack of sufficient observational datasets at these scales. The sea-surface height measurements of the upcoming SWOT altimeter mission should provide information on kinetic energy exchanges in the upper ocean down to 10-15 km. Numerical ocean models, able to describe ocean dynamics down to $\sim$10 km, have been developed in anticipation of the SWOT mission. In this study, we use two state-of-the-art, realistic, North Atlantic simulations, with horizontal resolutions $ \sim $ 1.5 km, to investigate the distribution and exchanges of kinetic energy at fine-scales in the open ocean. Our results show that the distribution of kinetic energy at fine-scales approximately follows the predictions of quasi-geostrophic dynamics in summertime but is somewhat consistent with submesoscale fronts-dominated regimes in wintertime. The kinetic energy spectral fluxes are found to exhibit both inverse and forward cascade over the top 1000 m, with a maximum inverse cascade close to the average energy-containing scale. The forward cascade is confined to the ocean surface and shows a strong seasonality, both in magnitude and range of scales affected. Our analysis further indicates that high-frequency motions ($<$1day) play a key role in the forward cascade and that the estimates of the spectral fluxes based on geostrophic velocities fail to capture some quantitative aspects of kinetic energy exchanges across scales.

Adekunle Ajayi

and 6 more

Ocean circulation is dominated by turbulent geostrophic eddy fields with typical scales ranging from 10 km to 300 km. At mesoscales (> 50 km), the size of eddy structures varies regionally following the Rossby radius of deformation. The variability of the scale of smaller eddies is not well known due to the limitations in existing numerical simulations and satellite capability. But it is well established that oceanic flows (< 50km) generally exhibit strong seasonality. In this study, we present a basin-scale analysis of coherent structures down to 10\,km in the North Atlantic Ocean using two submesoscale-permitting ocean models, a NEMO-based North Atlantic simulation with a horizontal resolution of 1/60 (NATL60) and an HYCOM-based Atlantic simulation with a horizontal resolution of 1/50 (HYCOM50). We investigate the spatial and temporal variability of the scale of eddy structures with a particular focus on eddies with scales of 10 to 100\,km, and examine the impact of the seasonality of submesoscale energy on the seasonality and distribution of coherent structures in the North Atlantic. Our results show an overall good agreement between the two models in terms of surface wavenumber spectra and seasonal variability. The key findings of the paper are that (i) the mean size of ocean eddies show strong seasonality; (ii) this seasonality is associated with an increased population of submesoscale eddies (10\,–\,50\,km) in winter; and (iii) the net release of available potential energy associated with mixed layer instability is responsible for the emergence of the increased population of submesoscale eddies in wintertime.