Siyuan Wang

and 11 more

The marine cyanobacterium Trichodesmium has a remarkable ability to interact with and utilize air-borne dust as a nutrient source. However, dust may adversely affect Trichodesmium through buoyancy loss and exposure to toxic metals. Our study explored the effect of desert dust on buoyancy and mortality of natural Red Sea puff-shaped Trichodesmium thiebautii. Sinking velocities and ability of individual colonies to stay afloat with increasing dust loads were studied in sedimentation chambers. Low dust loads of up to ~400 ng per colony did not impact initial sinking velocity and colonies remained afloat in the chamber. Above this threshold, sinking velocity increased linearly with the colony dust load at a slope matching prediction based on Stoke’s law. The potential toxicity of dust was assessed with regards to metal dissolution kinetics, differentiating between rapidly released metals that may impact surface blooms and gradually released metals that may impact dust-centering colonies. Incubations with increasing dust concentrations revealed colony demise, but the observed lethal dose far exceeded dust concentrations measured in coastal and open ocean systems. Removal of toxic particles as a mechanism to reduce toxicity was explored using SEM-EDX imaging of colonies incubated with Cu-minerals, yet observations did not support this pathway. Combining our current and former experiments, we suggest that in natural settings the nutritional benefits gained by Trichodesmium via dust collection outweigh the risks of buoyancy loss and toxicity. Our data and concepts feed into the growing recognition of the significance of dust for Trichodesmium’s ecology and subsequently to ocean productivity.
The Amazon River has the largest volume on earth, making up 15–20% of the annual fluvial discharge into oceans. The neighboring Pará River mixes with the Amazon River waters in the Amazon Estuary before forming a plume that extends into the Atlantic. Despite the global importance of these rivers, dissolved trace metal fluxes from this estuary remain unknown. Here we present data for dissolved (<0.2 µm) trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb and U) in the Amazon Estuary during the high discharge season (April–May 2018). We observed distinct trace metal signatures for the Amazon and Pará Rivers, reflecting different catchment areas. Concentrations of the particle-reactive elements (Mn, Fe and Pb) decreased rapidly at low-salinity (S≤2), resulting in the highest estuarine removal (86–94% in the Amazon; 61–70% for the Pará). Co, Ni and Cu removal was comparatively low in both river transects (6–39%), while Cd was the only element with a consistent net input. Chemical fluxes were estimated using (a) endmember concentrations and estuarine removal and (b) combining trace element concentrations with 228Ra fluxes. Relative to global total river fluxes, the Amazon and Pará Rivers combined contribute 21% of dissolved Cu and 18% of dissolved Ni during the high discharge season, but account for comparatively low fractions of Mn, Fe, Co and Zn. These data quantify, for the first time, the trace metal output from the world’s largest and 5th largest river into the Atlantic Ocean, filling a critical gap in knowledge of this globally-important region.