El Niño‐Southern Oscillation (ENSO) is often considered as a source of long-term predictability for extreme events via its teleconnection patterns. However, given that its characteristic cycle varies from two to seven years, it is difficult to obtain statistically significant conclusions based on observational periods spanning only a few decades. To overcome this, we apply the global flood risk modeling framework developed by Carozza and Boudreault to an equivalent of 1600 years of bias-corrected GCM outputs. The results show substantial anomalies in flood occurrences and impacts for El Niño and La Niña when compared to the all-year baseline. We were able to obtain a larger global coverage of statistically significant results than previous studies limited to observational data. Asymmetries in anomalies for both ENSO phases show a larger global influence of El Niño than La Niña on flood hazard and risk.