Pulmonary Vein Isolation-induced Vagal Nerve Injury and Gastric Motility DisordersBachir Lakkiss, MD; Marwan M. Refaat, MDDivision of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, LebanonRunning Title: PVI-induced vagal nerve injury and gastric motility disordersWords: 665 (excluding the title page and references)Keywords: Heart Diseases, Cardiovascular Diseases, Cardiac Arrhythmias, Atrial Fibrillation, Catheter Ablation, Pulmonary Vein IsolationFunding: NoneDisclosures: NoneCorresponding Author:Marwan M. Refaat, MD, FACC, FAHA, FHRS, FRCPTenured Professor of MedicineTenured Professor of Biochemistry and Molecular GeneticsVan Dyck Medical Educator and Director of the Cardiovascular Fellowship ProgramDepartment of Internal Medicine, Cardiovascular Medicine/Cardiac ElectrophysiologyAmerican University of Beirut Faculty of Medicine and Medical CenterPO Box 11-0236, Riad El-Solh 1107 2020- Beirut, LebanonUS Address: 3 Dag Hammarskjold Plaza, 8th Floor, New York, NY 10017, USAOffice: +961-1-350000/+961-1-374374 Extension 5353 or Extension 5366 (Direct)Email: [email protected] fibrillation (AF) is the most prevalent heart rhythm abnormality worldwide. An estimated three to six million people in the United States have AF. It is expected that this number is likely to double by 2050, making AF a significant public health burden. (1) AF is a leading cause of stroke and thromboembolism and is associated with a reduced quality of life. (2) Furthermore, it is linked to an increased mortality in both men and women, with an OR for death of 1.5 in men and 1.9 in women. (3) Medical expenditures for AF are significant, ranging from an annual cost of $1,632 to $21,099, with acute care accounting for the largest cost component in addition to anticoagulation therapy, which accounted for almost one-third of these costs. (4) The four pillars of AF management include rhythm control, rate control, stroke prevention and risk factor management. (5, 6) While antiarrhythmic drugs are used in some patients for AF rhythm control, AF ablation using pulmonary vein isolation (PVI) is regarded as the major modality for rhythm control. (6)The vagal nerve provides most of the parasympathetic innervation to the abdominal organs, including the stomach, esophagus, and a significant portion of the intestines. It serves a major role in the regulation of gastric and esophageal motility, in addition to maintaining lower esophageal sphincter tone. (7-9) Due to the relatively close vicinity of the vagal nerve plexus located on the anterior surface of the esophagus and the left atrial posterior wall, the thermal energy utilized during ablation can result in uncommon but potentially fatal complications such as esophageal perforation and atrial-esophageal fistula formation. (10-12) In addition, radiofrequency ablation for AF is associated with non-fatal complications such as an increased risk of gastric motility disorders and acid reflux. (13, 14)In the current issue of the Journal of Cardiovascular Electrophysiology, Meininghaus et al. recruited 85 patients to assess the incidence of ablation-induced vagal nerve injury (VNI) using both cryoballoon and radiofrequency ablation. Although many cases of VNI induced by PVI have been documented previously, this is one of the first studies to utilize electrophysiologic measurements of gastric motility (EGG) using cutaneous electrodes to record the electrical activity of the stomach two days prior to and two days after the procedure. (15-17) Moreover, the authors have used endoscopy to detect lesions such as erosions, ulcers, and perforations in the esophagus one week prior to and within two days of the procedure.The findings from this study add to our understanding of one of the complications of PVI in patients with AF (13, 14). One of the key outcomes the researchers observed was the perceived direct link between VNI and preexisting esophageal vulnerability. The authors have found that patients who had preexisting esophagitis had an elevated risk of developing VNI. In addition, the authors identified that in patients in whom EGG showed VNI, the elevated risk of ablation-induced endoscopic pathology was present in the post-procedure endoscopy. Furthermore, another significant finding was the detection of VNI on EGG in approximately one-third of PVI patients, irrespective of energy source, whether high power short duration, or moderate power moderate duration. These findings did not corroborate other studies, which showed that titration of the duration of the ablation energy could prevent VNI in patients undergoing AF ablation. (18)Overall, the authors should be commended for their tremendous efforts in attempting to understand the intricate pathophysiology and the association of esophageal lesions, atrial-esophageal fistula formation, and vagal nerve injury following PVI using EGG. Certainly, the results of this study have tremendous clinical implications. EGG could have a very important role in the prevention of atrial-esophageal fistula formation in the future. The article had a few limitations, mainly that the results were from a single-center study. Further studies incorporating additional patients from different medical centers should be conducted to better understand the complex pathophysiology of vagal nerve injury and gastric motility disorders following PVI. Advances in esophageal protection technologies will help in decreasing esophageal lesions during PVI. (19-20)References1. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, et al. Secular Trends in Incidence of Atrial Fibrillation in Olmsted County, Minnesota, 1980 to 2000, and Implications on the Projections for Future Prevalence. Circulation. 2006;114(2):119-25. doi: doi:10.1161/CIRCULATIONAHA.105.595140.2. Jalloul Y, Refaat MM. IL-6 Rapidly Induces Reversible Atrial Electrical Remodeling by Downregulation of Cardiac Connexins. J Am Heart Assoc. 2019;8(16):e013638. Epub 2019/08/20. doi: 10.1161/jaha.119.013638. PubMed PMID: 31423871; PubMed Central PMCID: PMCPMC6759896.3. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98(10):946-52. Epub 1998/09/16. doi: 10.1161/01.cir.98.10.946. PubMed PMID: 9737513.4. Wodchis WP, Bhatia RS, Leblanc K, Meshkat N, Morra D. A review of the cost of atrial fibrillation. Value Health. 2012;15(2):240-8. Epub 2012/03/22. doi: 10.1016/j.jval.2011.09.009. PubMed PMID: 22433754.5. Lakkis B, Refaat MM. Is esophageal temperature management needed during cryoballoon ablation for atrial fibrillation? Journal of Cardiovascular Electrophysiology. 2022;33(12):2567-8. doi: https://doi.org/10.1111/jce.15725.6. Chung MK, Refaat M, Shen W-K, Kutyifa V, Cha Y-M, Di Biase L, et al. Atrial Fibrillation: JACC Council Perspectives. Journal of the American College of Cardiology. 2020;75(14):1689-713. doi: https://doi.org/10.1016/j.jacc.2020.02.025.7. Richards WG, Sugarbaker DJ. Neuronal control of esophageal function. Chest Surg Clin N Am. 1995;5(1):157-71. Epub 1995/02/01. PubMed PMID: 7743145.8. Hsu M, Safadi AO, Lui F. Physiology, Stomach. StatPearls. Treasure Island (FL): StatPearls PublishingCopyright © 2022, StatPearls Publishing LLC.; 2022.9. Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42(5):610-9. Epub 2008/03/28. doi: 10.1097/MCG.0b013e31816b444d. PubMed PMID: 18364578; PubMed Central PMCID: PMCPMC2728598.10. Kapur S, Barbhaiya C, Deneke T, Michaud GF. Esophageal Injury and Atrioesophageal Fistula Caused by Ablation for Atrial Fibrillation. Circulation. 2017;136(13):1247-55. doi: doi:10.1161/CIRCULATIONAHA.117.025827.11. D’Avila A, Ptaszek LM, Yu PB, Walker JD, Wright C, Noseworthy PA, et al. Images in cardiovascular medicine. Left atrial-esophageal fistula after pulmonary vein isolation: a cautionary tale. Circulation. 2007;115(17):e432-3. Epub 2007/05/02. doi: 10.1161/circulationaha.106.680181. PubMed PMID: 17470703.12. Sánchez-Quintana D, Cabrera JA, Climent V, Farré J, Mendonça MCd, Ho SY. Anatomic Relations Between the Esophagus and Left Atrium and Relevance for Ablation of Atrial Fibrillation. Circulation. 2005;112(10):1400-5. doi: doi:10.1161/CIRCULATIONAHA.105.551291.13. Shah D, Dumonceau J-M, Burri H, Sunthorn H, Schroft A, Gentil-Baron P, et al. Acute Pyloric Spasm and Gastric Hypomotility: An Extracardiac Adverse Effect of Percutaneous Radiofrequency Ablation for Atrial Fibrillation. Journal of the American College of Cardiology. 2005;46(2):327-30. doi: https://doi.org/10.1016/j.jacc.2005.04.030.14. Park S-Y, Camilleri M, Packer D, Monahan K. Upper gastrointestinal complications following ablation therapy for atrial fibrillation. Neurogastroenterology & Motility. 2017;29(11):e13109. doi: https://doi.org/10.1111/nmo.13109.15. Choi SW, Kang SH, Kwon OS, Park HW, Lee S, Koo BS, et al. A case of severe gastroparesis: indigestion and weight loss after catheter ablation of atrial fibrillation. Pacing Clin Electrophysiol. 2012;35(3):e59-61. Epub 2010/10/05. doi: 10.1111/j.1540-8159.2010.02912.x. PubMed PMID: 20883511.16. Lakkireddy D, Reddy YM, Atkins D, Rajasingh J, Kanmanthareddy A, Olyaee M, et al. Effect of atrial fibrillation ablation on gastric motility: the atrial fibrillation gut study. Circ Arrhythm Electrophysiol. 2015;8(3):531-6. Epub 2015/03/17. doi: 10.1161/circep.114.002508. PubMed PMID: 25772541.17. Kuwahara T, Takahashi A, Takahashi Y, Kobori A, Miyazaki S, Takei A, et al. Clinical characteristics and management of periesophageal vagal nerve injury complicating left atrial ablation of atrial fibrillation: lessons from eleven cases. J Cardiovasc Electrophysiol. 2013;24(8):847-51. Epub 2013/04/05. doi: 10.1111/jce.12130. PubMed PMID: 23551640.18. KUWAHARA T, TAKAHASHI A, KOBORI A, MIYAZAKI S, TAKAHASHI Y, TAKEI A, et al. Safe and Effective Ablation of Atrial Fibrillation: Importance of Esophageal Temperature Monitoring to Avoid Periesophageal Nerve Injury as a Complication of Pulmonary Vein Isolation. Journal of Cardiovascular Electrophysiology. 2009;20(1):1-6. doi: https://doi.org/10.1111/j.1540-8167.2008.01280.x.19. D’Avila A, Ptaszek LM, Yu PB, Walker JD, Wright C, Noseworthy PA, Myers A, Refaat M, Ruskin JN: Left Atrial-Esophageal Fistula After Pulmonary Vein Isolation. Circulation May 2007; 115(17): e432-3.20. El Moheb MN, Refaat MM. Protecting the Esophagus During Catheter Ablation: Evaluation of a Novel Vacuum Suction-Based Retractor. J Cardiovasc Electrophysiol Jul 2020; 31 (7): 1670-1671.