Cyclohexanone monooxygenase (CHMO), a member of the Baeyer-Villiger monooxygenase family, is a versatile biocatalyst that efficiently catalyzes the conversion of cyclic ketones to lactones. In this study, an Acidovorax-derived CHMO gene was expressed in Pseudomonas taiwanensis VLB120. Upon purification, the enzyme was characterized in vitro and shown to feature a broad substrate spectrum and up to 100% conversion in 6 h. Further, we determined and compared the cyclohexanone conversion kinetics for different CHMO-biocatalyst formats, i.e., isolated enzyme, suspended whole cells, and biofilms, the latter two based on recombinant CHMO-containing P. taiwanensis VLB120. Biofilms showed less favorable values for KS (9.3-fold higher) and kcat (4.8-fold lower) compared to corresponding KM and kcat values of isolated CHMO, but a favorable KI for cyclohexanone (5.3-fold higher). The unfavorable KS and kcat values are related to mass transfer- and possibly heterogeneity issues and deserve further investigation and engineering, in order to exploit the high potential of biofilms regarding process stability. Suspended cells showed an only 1.8-fold higher KS, but 1.3- and 4.2-fold higher kcat and KI values than isolated CHMO. This together with the efficient NADPH regeneration via glucose metabolism makes this format highly promising from a kinetics perspective.