Alizée Thomas

and 6 more

The black piranha (Serrasalmus rhombeus), a widely spread species in the rivers of the Amazon basin, plays a vital role as both key predator and important prey. Despite its essential contribution to ecosystem stability, there is a lack of information regarding its genetic diversity and population dynamics in the central Amazon region. As the Amazon continues to undergo environmental changes in the context of growing anthropogenic threats, such knowledge is fundamental for assist in the conservation of this species. This study is the first to analyze the genetic diversity and population structure of S. rhombeus in the central Amazon region using high-resolution genomic data. We employed a Genotyping-by-Sequencing approach with 248 samples across 14 study sites from various tributaries, encompassing diverse water types (black, white and clear water) and characterized by 34 physiochemical parameters. The data reveals low diversity accompanied by pronounced signs of inbreeding in half of the sites and robust genetic differentiation and variation among sites and within-sites. Surprisingly, we also found evidence of higher dispersal capacity than previously recognized. Our analysis exposed a complex and high population structure with genetic groups exclusive to some sites. Gene flow was low and some groups presented ambiguous genealogical divergence index (gdi) signals, suggesting the occurrence of potential cryptic species. Moreover, our results suggest that the the population structure of black piranha appears more influenced by historical events than contemporary factors. These results underscore the need to give greater attention to this keystone species, for which no regulatory framework or conservation strategies is presently in effect.