This paper introduces a novel resource allocation algorithm, Priority-Aware Federated Resource Allocation (PAFRA), tailored for Power Line Communication (PLC) systems. Utilizing a federated learning framework, PAFRA optimizes the distribution of limited spectrum resources among multiple nodes within a residential environment. The algorithm employs a priority-based time slot allocation to manage subchannel conflicts and uses a Double Deep Q-Network (DDQN) for local training at each node, incorporating state, action, and reward configurations to refine transmission power and subchannel selections. Extensive simulations demonstrate that PAFRA significantly enhances system throughput across various Signal-to-Noise Ratio (SNR) levels, outperforming existing adaptive resource allocation strategies and random allocation methods. The findings highlight PAFRA’s ability to achieve superior performance in dynamic PLC environments, illustrating its potential to optimize network efficiency while adhering to strict regulatory emission standards.